

Application for QIBA Project Funding

Title of Proposal: Inter-scanner/phantom	inter-clinic comparis	son of reader no	dule sizing in CT imaging of a
QIBA Committee/Subgroup: QIBA Volume CT/Group 1C			
NIBIB Task Number(s) which this project addresses:			
Project Coordinator or Lead Investigator Information:			
Last Name: McNitt-Gray	First Name: Michael		Degree(s): PhD
e-mail:		Tel#:	
Institution/Company: David Geffen School of Medicine at UCLA, Department of Radiology			
Amount Requested:			

Project Description-

Inter-scanner/inter-clinic comparison of reader nodule sizing in CT imaging of a phantom.

Primary goals and objectives-

In support of QIBA profile development, this reader study will characterize uncertainty in volume and other reader-based sizing of phantom nodules in CT imagery collected on scanners from several vendors. We will:

- 1. develop an imaging protocol that includes:
 - a standard multi-scanner branch (based on ACRIN 6678)
 - an image quality-based, device-independent branch
- 2. analyze the accuracy and precision of sizing measures for all design factors including: site/device, imaging protocol factors, nodule characteristics & reader, and
- 3. determine the minimum detectable level of change that can be achieved when measuring nodules in phantom datasets.