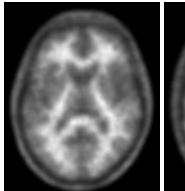
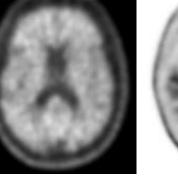
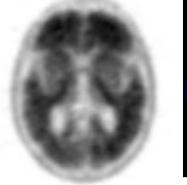
QIBA PET Amyloid Biomarker Committee: Overview and 2018 Update

Dawn C. Matthews¹, Satoshi Minoshima², Anne M. Smith³, Eric S. Perlman⁴, Kevin O'Donnell⁵, Rachid Fahmi³, Tammie Benzinger⁶, Ronald Boellaard⁷, Christopher Buckley⁸, Santi Bullich⁹, Susan M. DeSanti⁹, John M. Hoffman², Paul E. Kinahan¹⁰, Greg Klein¹¹, Adriaan Lammertsma¹², Martin A. Lodge¹³, Nancy Obuchowski¹⁴, Rathan Subramaniam¹⁵, John J. Sunderland¹⁶, Jean-Luc Vanderheyden¹⁷, Richard Wahl⁶

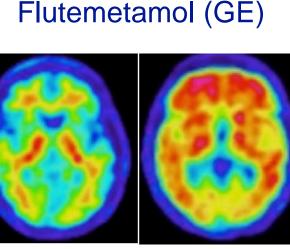

¹ADM Diagnostics, ²University of Utah, ³Siemens Medical Solutions USA, Inc., ⁴Perlman Advisory Group, ⁵Canon Medical Research USA, ⁶Washington, ¹¹Roche, ¹²VU Medical Center, ¹³Johns Hopkins School of Medicine, ¹⁴Cleveland Clinic Foundation, ¹⁵UT Southwestern, ¹⁶University of Iowa, ¹⁷JLVMI Consulting


Amyloid Imaging Importance in clinical trials and patient care

Beta amyloid plaques are a hallmark of Alzheimer's disease, accumulating years prior to symptom onset. Fibrillar amyloid can be measured using PET and there are now three FDA approved ¹⁸F tracers, while ¹¹C-PIB is still used for research in some centers. A negative amyloid scan indicates sparse to no neuritic plaques, and is inconsistent with a neuropathological diagnosis of AD at the time of image acquisition. A positive amyloid scan is consistent with the presence of amyloid pathology.


Florbetaben (Life Molecular Imaging)

Florbetapir (Lilly/Avid)



Positive

Negative

Positive

Negative

Negative

Positive

Amyloid imaging is a critical part of many clinical trials as:

- An inclusion criterion, confirming presence of AD pathology
- An endpoint, particularly for anti-amyloid therapeutics

In patient care, the IDEAS study (www.ideas-study.org) has demonstrated in 3,979 participants that amyloid imaging changed medical management in 67.8% of MCI patients and 65.9% of dementia patients.

The impact of quantitative methods

With accumulation rates averaging 1 to 3% per year, changes in amyloid burden over the duration of a clinical trial can only be measured using quantitative methods. However, measurement is influenced by many technical factors beyond amyloid, as illustrated below.

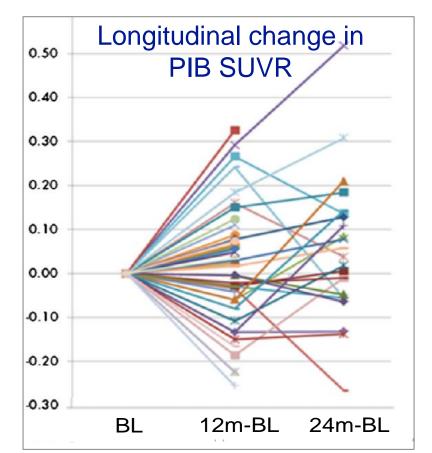


Table: The impact of reference region on the number of $A\beta$ + MCI subjects required to detect a 25% reduction in (i) amyloid accumulation rate over 12 months or (ii) amyloid burden (from Chen K et al, 2015)

Reference region	(i) Number required	(ii) Number required
White matter	325	13
Pons	2,718	109
Cerebellum	8,076	324

Figure: Erratic changes in PIB SUVR from baseline at 12 and 24 months in ADNI MCI subjects, often due to technical factors (from Schmidt M et al, 2012)

Amyloid PET Profile Scope

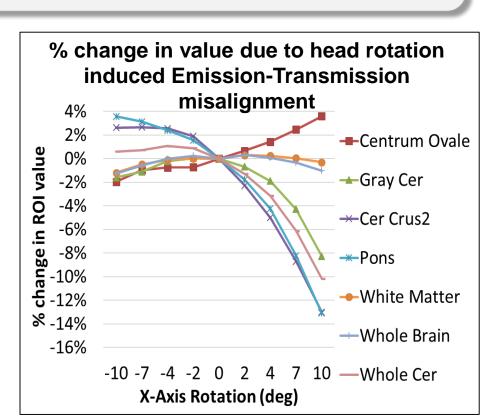
- > Focus on late timeframe period when the tracer has come to "pseudoequilibrium", during which a Standardized Uptake Value Ratio (SUVR: target region mean value / reference region mean value) is calculated
- > Limitations of SUVR and potential benefits of **full dynamic modeling** are also described

Profile Claim and Clinical Context

Technical Performance Claim: Brain amyloid burden as reflected by the SUVR is measurable from ¹⁸F amyloid tracer PET with a within-subject coefficient of variation (wCV) of <=1.94%.

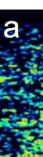
Claim is to be interpreted in the context of considerations stated in the profile, including reference region selection. Contextual examples are provided to illustrate the practical application of the profile, as in determining number of subjects required for a trial.

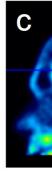
Profile Activities and Guidelines


The profile identifies critical factors and recommendations impacting testretest variability at each stage in image acquisition, processing and analysis, with highlights summarized here.

SUBJECT HANDLING

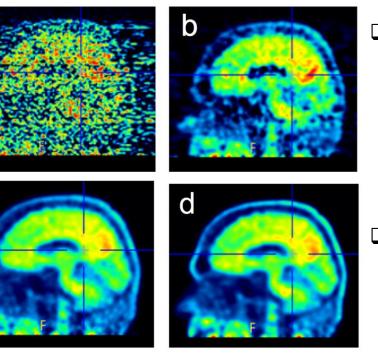
- □ Tracer preparation, amount injected, and injection time window should be consistent and according to manufacturer label
- □ **Subject positioning** should ensure complete brain coverage, distanced from edge of scanner field of view, with subject comfortable and firmly secured to prevent head motion.


IMAGE ACQUISITION


- □ Same scanner should be used to acquire serial images within-subject.
- **Time window:** Same post-injection time window should be used for all scans.
- □ Subject motion: Major contributor to error, must minimize motion within and emission and transmission between scans.
- □ **Frames:** Multiple timeframes should be used (<= 5 min. each) to enable realignment if subject motion occurs.

Misalignment between emission and transmission scan can cause error of a few to many percent

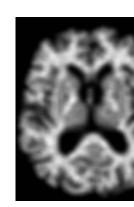
IMAGE RECONSTRUCTION AND POST PROCESSING



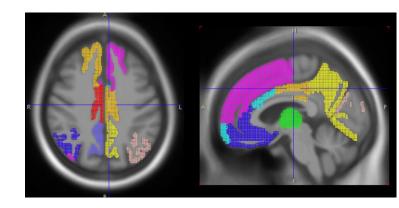
Co-registration and warping must be consistent with goodness of fit verified; serial PET to PET co-registration can provide greater alignment, reducing variability

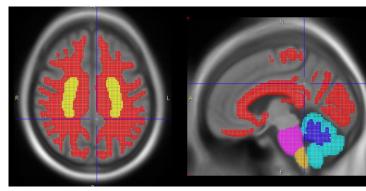
□ Reference region should be selected to minimize longitudinal variability. Cerebellar cortex can optimize sensitivity but can be vulnerable to scanner noise and subject motion, and its low z-axis location relative to target regions can create longitudinal error from scanner axial variability. Regions including white matter and/or superior slices can reduce variability (florbetapir studies).

The Quality Control section and Appendices provide guidelines on procedures such as phantom imaging to ensure equipment and site quality, and examples of results.


The Conformance Testing section of the Profile specifies performance criteria and evaluation methods to ensure that an imaging site, equipment, and analysis workstation/software meet the requirements described in the Profile as necessary to meet the QIBA Profile claim.

- Image reconstructed using (a) FBP 0mm smooth; (b) FBP 5mm; (c) OSEM 4i24s 5mm; (d) OSEM+PSF 4i24s 5mm.
- Same reconstruction method and parameters should be used, as based on a QIBA groundwork project, withinsubject regional changes can exceed 10%, lower when cortical average is used
- Transmission scan Emission – alignment is critical as differences can introduce several percent error as quantified in a QIBA groundwork project
- Intra-scan inter-frame motion **correction** is important to avoid variability due to motion induced tissue misalignment

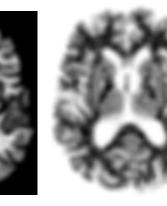

A Digital Reference Object (DRO) has been developed through a QIBA Groundwork Project to enable testing of image workstation software linearity and repeatability, and in the future can be used to test accuracy.

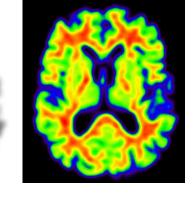

Quantitative

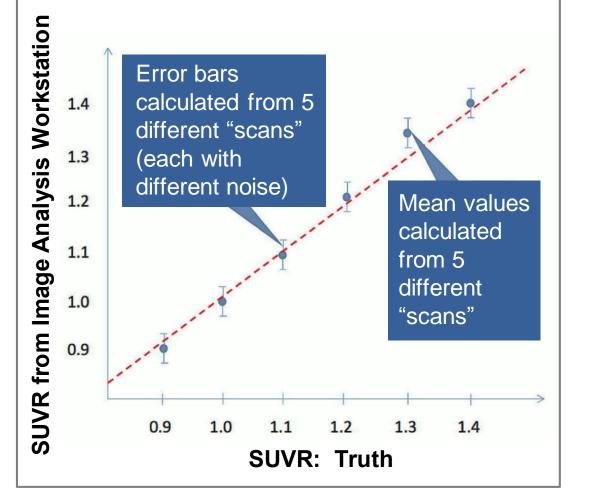
Representative slice from Amyloid DRO displayed with color schemes for florbetaben, florbetapir. and flutemetamol. Right: DRO enables testing of a given image analysis software at 6 intensity levels, each with 5 simulated noise levels.

IMAGE ANALYSIS

Example regions interest (top) and reference regions (bottom)

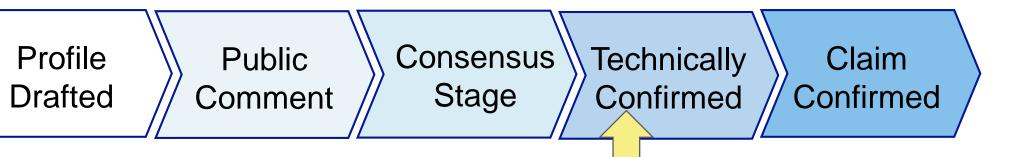

□ **Target regions** must be placed consistently. Use of a cortical average can reduce variability. Atrophy rate may influence measurement.


QUALITY CONTROL


Conformance Testing

Physician

Pharma



Biomarkers RSNA®

Alliance

Amyloid PET Profile Development Status

Public review and incorporation of comments into the profile have been completed, achieving Consensus Stage. The profile is now in the Technical Confirmation process.

Next steps

- Survey sites for
- implementation feasibility
- Incorporate site feedback
- **Potential Version 2 Expansion**
- Accuracy (cross-sectional) claim
- Expanded guidelines: Centiloid, partial volume correction

Amyloid Biomarker Committee

How to be involved

- Monthly calls
- Annual meeting at RSNA
- Profile review and input
- Profile testing
- Profile implementation

For more information, visit http://qibawiki.rsna.org

Various QIBA projects and activities have been funded in whole or in part with Federal funds from the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Department of Health and Human Service, under Contracts Nos. HHSN268201000050C, HHSN268201300071C and HHSN268201500021C.