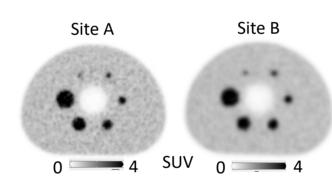

Japan-QIBA: Overview and Current Status

Shohei Fujita^{1,2}, Akifumi Hagiwara¹, Riwa Kishimoto³, Mikio Suga⁴, Yoshiharu Ohno⁵, Shigeki Aoki¹, Ukihide Tateishi⁶

¹ Juntendo University, ² The University of Tokyo, ³ National Institutes for Quantum and Radiological Science and Technology, ⁴ Chiba University, ⁵ Fujita Health University, ⁶ Tokyo Medical and Dental University

Organizational Structure

- □ Japan-QIBA (J-QIBA) was organized by Japan Radiological Society (JRS) in 2015. The motive of J-QIBA establishment is based on the enthusiastic activity of RSNA QIBA.
- □ The activity of J-QIBA is mainly supported by JRS and Japanese Society of Magnetic Resonance in Medicine.


Past Activity Highlights of J-QIBA

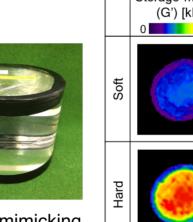
□ J-QIBA homepage opened in Oct 2018

- Introduction of J-QIBA activities
- Japanese translation of RSNA-QIBA Profiles
- □ Comparative table between RSNA-QIBA FDG PET/CT Profile and guideline of J-PEQi
- Active participation of SPECT public comment regarding the QIBA Profile for the DaT-SPECT Profile in cooperation with Japanese Society of Nuclear Medicine (JSNM).
- □ Interaction with RSNA-QIBA, including participation in QIBA Annual Meeting.

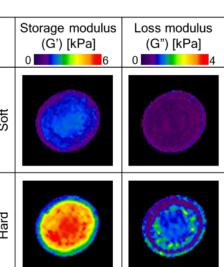
Nuclear Medicine BC

- Standardization of FDG-PET/CT for Response Evaluation by RSNA-QIBA Profile: Preliminary Results of a Multicenter Study
- Twelve facilities in Asia (South Korea, Taiwan and Hong Kong) were enrolled in this trial, and standardization was carried out.
- □ For evaluation of the scanner, we performed the following three measurements as described in the profile:
 - (1) standardized uptake value (SUV) measurements
 - (2) resolution measurements
 - (3) noise measurements

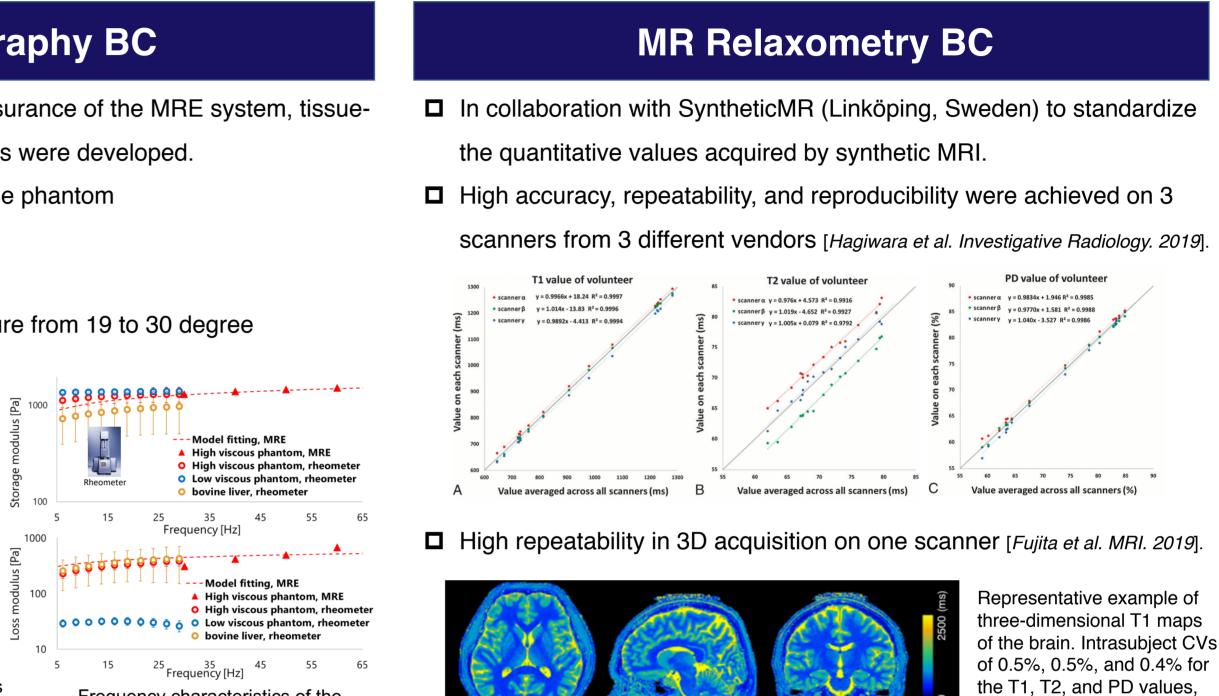
Phantom image. The left image was reconstructed in Site A (COV 11.9%). and the right was in Site B (COV 5.2%).


CT Lung Density & Volumetry BC

- 1375-82
- Radiol. 2019; 37(5):399-411.


Cite	SUV measurements		Resolution	Noise measurements
Site	mean	SD	measurements	COV (%)
А	1.0	0.1	Yes	11.9%
В	1.0	0.1	Yes	5.2%
С	0.9	0.1	Yes	6.1%
D	1.0	0.1	Yes	7.7%
E	1.1	0.1	Yes	7.1%
F	1.1	0.1	Yes	11.7%
G	0.9	0.1	Yes	8.3%
Н	1.1	0.1	Yes	8.6%
1	1.0	0.1	Yes	7.9%
J	1.1	0.1	Yes	8.7%
K	1.0	0.1	Yes	9.7%
L	1.0	0.1	Yes	10.4%

MR Elastography BC


- For characterization and quality assurance of the MRE system, tissuemimicking viscoelastic gel phantoms were developed.
- The storage and loss modulus of the phantom Less than 3% change:
 - for 2 years
 - by changing temperature from 19 to 30 degree

Tissue-mimicking viscoelastic phantom (Polyacrylamide gel)

Storage and loss modulus maps of the MRE phantoms with different viscoelasticity

Frequency characteristics of the phantom and in-vitro tissue

System

SWE

TE

MRE

Canon Medical Systems/Aprio i800

GE Healthcare Japan/LOGIC E10

Hitachi /ARIETTA 850

Konica Minolta/Aixplorer

Phillips Japan/EPIQ Elite

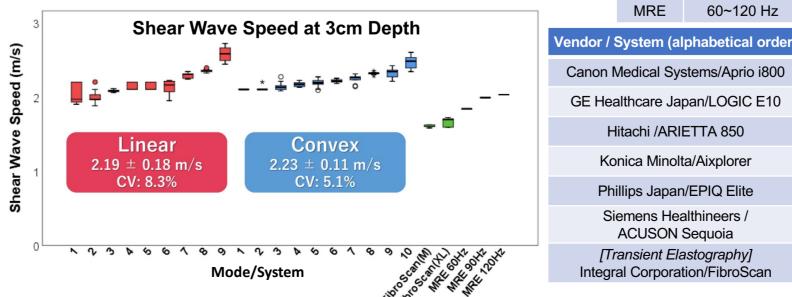
Siemens Healthineers /

ACUSON Sequoia

[Transient Elastography]

Integral Corporation/FibroScan

□ As CT volumetry biomarker commitee issue, we applied our CADv software to RSNA QIBA 3A Public Challenge and publish the following paper with RSNA QIBA: Athelogou M, et al. Acad Radiol. 2016; 23(8): 940-52. □ After the above-mentioned Public Challenge, we tested the influence of radiation dose reduction and reconstruction algorithm to CADv and published the following paper: Ohno Y, et al. .Eur J Radiol. 2016; 85(8):

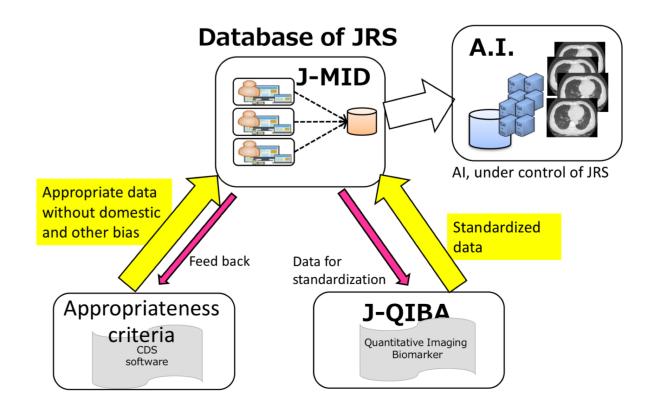

□ As CT lung density committee issue, we performed QIBA phantom study and tested the influence of scan method, radiation dose and reconstruction and published the results as follows: Ohno Y, et al. Jpn J

Based on the above-mentioned study results, we published a review article as follows: Ohno Y, et al. Eur J Radiol. 2019; 111: 93-103.

US Shear Wave Speed BC

Collaboration study with the MR elastography BC and the SWE standardization Subcommittee of US Equipment and Safety Committee, The Japan Society of Ultrasonics in Medicine

- □ Measured shear wave speed (SWS) of a visco-elastic phantom with linear probe (9 modes) or convex probe (10 modes) of 6 shear wave elastography (SWE) systems, and compared the results with the SWS obtained from transient elastography (TE) and MR elastography (MRE).
- In comparison of the SWE, TE and MRE measurements, it was found that the higher the shear wave frequency, the faster the SWS.


Note: Results are sorted in ascending order of the median

J-QIBA in the Japan Safe Radiology

respectively.

- □ JRS is building a system of Japan Safe Radiology, which aims to increase the safety and efficacy of clinical radiology.
- □ Japan Medical Image Database (J-MID) was developed to accumulate multi-center data for this purpose, and J-QIBA is participating in J-MID to standardize the quality of data.

100~500 Hz

40~50 Hz

60~120 Hz