QIBA Volume Flow Profile Info

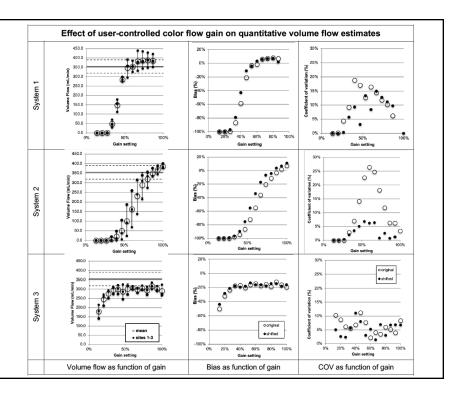
May 5, 2020

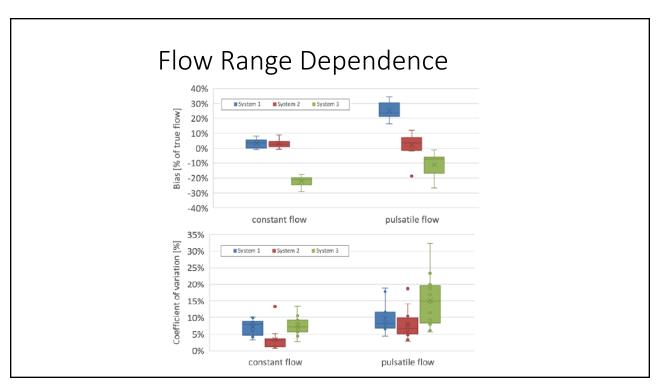
1

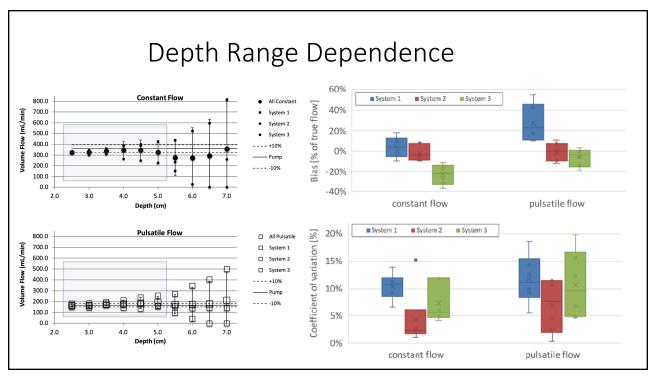
Clinical Objectives

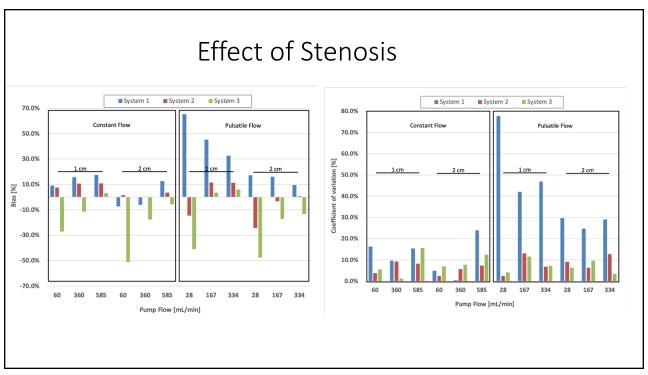
- Provide an accurate and reproducible measurement of volumetric blood flow
 - · Determine conditions under which reproducibility is achieved
 - Standard scanning procedures
 - · Range of vessel sizes
 - · Range of depths
 - · Determination of accuracy
 - Identify possible conditions where reference standard exist

Testing Objectives Achieved


- Establish accuracy of methods in controlled conditions (phantom)
 - Measure bias and variance
 - Range of flow rates
 - 1 to 12 mL/s
 - · Range of depths
 - 2.5 to 7 cm
 - · Range of Gains
 - 0-100%
 - · Constant and Pulsatile Flows
 - · Stenotic flow
 - · Range of vessel sizes
 - · Only 5mm diameter but with stenosis


3


Testing To Be Published


- Three systems
 - Canon Aplio 500 (Canon Medical Systems Inc., Tustin, CA) with a mechanically swept 9CV2 probe
 - GE LOGIQ LE9 (GE Healthcare, Milwaukee, WI) with a mechanically swept RSP6-16 probe
 - Philips EPIQ 7 (Philips Healthcare, Bothell, WA) with an X6-1 2D matrix array

Summary of Phantom Results

• Volume flow estimated by 3D color flow ultrasound was

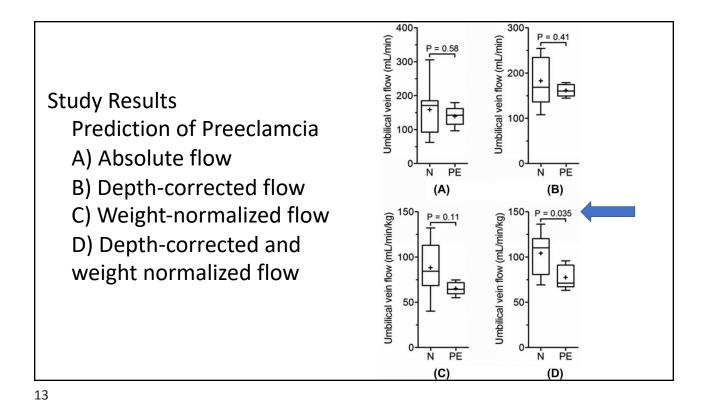
• Accurate (11.5% mean bias)

- Reproducible (10.4% mean within-subject COV)
- There were differences among systems that are still being examined.
- There are changes being made to systems expecting to improve performance.

9

Testing Objectives Achieved

- Two studies in human umbilical venous flow
 - Pinter et al. (JUM 2017)
 - Rubin et al. (Abstract for 2020 AIUM meeting and manuscript submitted)


Pinter et al.

- 35-patient cohort could be classified into 3 groups
 - 21 at-risk patients
 - 5 patients with preeclampsia
 - 9 patients with normal pregnancies
- LOGIQ E9 ultrasound system (GE Healthcare, Milwaukee, WI)
 - 2.0–8.0-MHz bandwidth convex array transducer (RAB6-D)
 - Mechanically- swept array
 - 30 volumes per data set
 - 5-10 minute acquisition time

11

Pinter et al.

- Free cord loop imaged
 - Generally 3 different free loop positions along the length of the umbilical cord
 - 5 patient had only two positions
 - 1 patient had only one position
 - Imaging depth range
 - 3.3-11.0 cm

Study Results - Reproducibility

Table 1. Volume Flow Estimate Variability (All Patients, Absolute Flow)

Statistic	Value
Intrapatient relative SD (CV), %	20.3 ± 10.1 WCV
Intrameasurement relative SD (CV), %	29.6 ± 9.6
Intrapatient relative SE, %	12.1 ± 5.9
Intrameasurement relative SE, %	5.6 ± 1.9

Data are presented as mean $\pm\,\text{SD}.$ CV indicates coefficient of variation.

Rubin et al.

- 12 subjects
 - High risk gestations
 - Hospitalized during pregnancy
 - Gestation
 - 24 to 35 5/7 weeks
 - Singleton
- Philips EPIQ 7 ultrasound scanner
 - 2D array transducer
 - X6-1 or XL14-3
 - · Body habitus
 - · Depth range
 - Availability

15

Rubin et al.

- Free cord loop imaged
 - At least six separate volume flow measurements were made along the vein
 - Generally three each for 3D volume flow and 2D spectral Doppler method for comparison

Study Results

- The true flow was unknown for these case (no reference standard)
- Mean within-subject coefficient of variation (wCV)
 - Spectral Doppler method : $46 \pm 17\%$
 - Gaussian surface method: 18 ± 14%

17

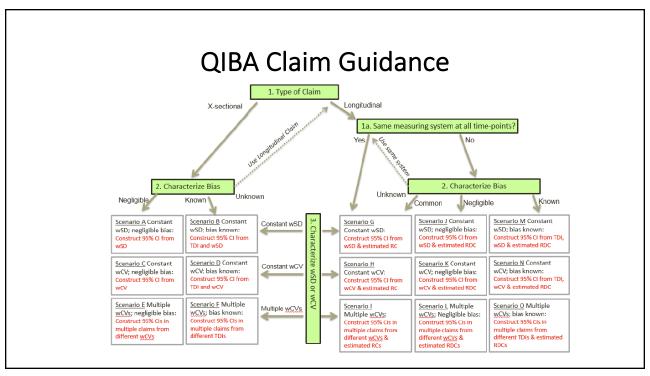
Potential Associated Claims

- Claim 1: (cross-sectional) For a measured volume blood flow of X mL/min, a 95% confidence interval for the true flow is X mL/min ±15%.
- Claim 2: (technical performance claim) The volume flow measurement has a within-subject coefficient of variation (wCV) < 20%.

Thoughts on Claim 1

- If we look at the results of the QIBA phantom study there can be additional restrictions considered.
- 1) Depth range over which a given accuracy can be achieved.
- 2) Velocity range over which it has been tested.
- 3) Any difference in such specifications between pulsatile and constant flow.
- Need to define the range over which we will intend for the profile to apply.
- What is the rationale?
- What can be stated from work done so far (QIBA round robin study, etc.)
- Reconsider in favor of defining a PSF/vessel diameter criteria

19


Thoughts on Claim 2

- Add any application specific claim(s) (absolute or longitudinal).
- The term "technical performance claim" appears appropriate for a similar type of claim.
- This is based on the performance in umbilical venous flow.
 - · Consider other sources such as dialysis grafts
 - Average COV 9.89 ± 8.02% based on 2D spectral Doppler

Overall Considerations

- What is needed for the clinical purpose?
 - Accuracy
 - · Reproducibility
- Claims construction process

21

