

QIBA Profile: **Dynamic Susceptibility Contrast MRI** (DSC-MRI)

Stage 2: Consensus Profile (maintenance version)

Published: 05 September 2023

2

16	Table of Contents	
17	Change Log:	.5
18	1. Executive Summary	.6
19	2. Clinical Context and Claims	.8
20	2.1 Clinical Interpretation	.9
21	2.2. Discussion	.9
22	3. Profile Activities	12
23	3.0. Site Conformance	15
24	3.0.1 Discussion	15
25	3.0.2 Specification	15
26	3.1. Staff Qualification	15
27	3.1.1 Discussion	16
28	3.1.2 Specification	16
29	3.2. Product Validation	16
30	3.2.1 Discussion	17
31	3.2.2 Specification	17
32	3.3. Pre-delivery	18
33	3.3.1 Discussion	18
34	3.3.2 Specification	18
35	3.4. Installation	19
36	3.5. Periodic QA	19
37	3.5.1 Discussion	19
38	3.5.2 Specification	19
39	3.6. Protocol Design	20
40	3.6.1 Discussion	20
41	3.6.2 Specification	22
42	3.7. Subject Selection	23
43	3.7.1 Discussion	23
44	3.8. Subject Handling	24
45	3.8.1 Discussion	24
46	3.8.2 Specification	24
47	3.9. Image Data Acquisition	25
48	3.9.1 Discussion	25

49	3.9.2 Specification	25
50	3.10. Image Data Reconstruction	26
51	3.10.1 Discussion	27
52	3.10.2 Specification	28
53	3.11. Image QA	28
54	3.11.1 Discussion	28
55	3.11.2 Specification	29
56	3.12. Image Distribution	30
57	3.12.1 Discussion	30
58	3.12.2 Specification	30
59	3.13. Image Analysis	31
60	3.13.1 Discussion	31
61	3.13.2 Specification	32
62	3.14. Image Interpretation	32
63	3.14.1 Discussion	32
64	3.14.2 Specification	32
65	4. Assessment Procedures	33
66	4.1. Assessment Procedure: MRI Equipment Specifications and Performance	33
67	4.2. Assessment Procedure: Digital Reference Object	33
68	4.2.1. Assessment Procedure: Linearity	34
69	4.2.2. Assessment Procedure: Within Subject Coefficient of Variance (wCV)	34
70	4.3. Assessment Procedure: Scanner Stability	35
71	4.4. Assessment Procedure: Pre-bolus Baseline	35
72	4.5. Assessment Procedure: Post-bolus Time-point	35
73	4.6. Assessment Procedure: AUC-TN and K2 maps calculation	36
74	4.7. Assessment Procedure: Normalization	37
75	4.8. Assessment Procedure: Patient Motion	37
76	4.9. Assessment Procedure: Bolus Profile	37
77	4.10. Assessment Procedure: Susceptibility Artifacts	37
78	5. Conformance	38
79	References	39
80	Appendices	43
81	Appendix A: Acknowledgements and Attributions	43

82	Appendix B: Background Information	2
83	Appendix C: Conventions and Definitions	3
84	Appendix D: Model-specific Instructions and Parameters	4
85	Appendix E: Conformance Checklists	6
86	Appendix F: Technical System Performance Evaluation using DSC Phantom	6
87 88	Appendix G: Recipe for making phantom components for Delta Susceptibility Contrast (DSC) MRI Phantom	0
89		

93 Change Log:

94 This table is a best-effort of the authors to summarize significant changes to the Profile.

95

Date	Sections Affected	Summary of Change
2023.07.17	Change Log	Deleted entries prior to published consensus profile
2023.07.17	3.11	Added reference to QIBA Profile: CT Tumor Volume Change for Advanced Disease to justify volume ranges
2023.07.17	4.7	Changed minimum size for region-of-interest for measuring values in normal appearing white matter to be consistent with the data analysis that was used for determining claims.
2023.07.17	3.9	Added specifications for contrast injection rate that had inadvertently been excluded during edits prior to Public Comment
2023.07.17	Technologist Checklist	Added specifications for contrast injection rate that had inadvertently been excluded during edits prior to Public Comment.

96

98 **1. Executive Summary**

- 99 The goal of a QIBA Profile is to help achieve a useful level of performance for a given biomarker.
- 100 Profile development is an evolutionary, phased process; this Profile is in the Public Comment
- 101 Resolution Draft stage. The performance claims represent expert consensus and will be
- 102 empirically demonstrated at a subsequent stage. Users of this Profile are encouraged to refer to
- 103 the following site to understand the document's context:
- 104 http://qibawiki.rsna.org/index.php/QIBA_Profile_Stages.
- 105 The **Claim** (Section 2) describes the biomarker performance.
- 106 The Activities (Section 3) contribute to generating the biomarker. Requirements are placed on
- 107 the **Actors** that participate in those activities as necessary to achieve the Claim.
- 108 Assessment Procedures (Section 4) for evaluating specific requirements are defined as needed.
- 109 **Conformance** (Section 5) regroups Section 3 requirements by Actor to conveniently check
- 110 Conformance.
- 111 This QIBA Profile, Dynamic-Susceptibility-Contrast Magnetic Resonance Imaging (DSC-MRI),
- addresses the measurement of an imaging biomarker for relative Cerebral Blood Volume (rCBV) for the evaluation of brain tumor progression or response to therapy. We note here, that this
- profile does not claim to be measuring quantitative rCBV due to lack of existing supporting literature; it does provide claims for a biomarker that is proportional to rCBV, which is the tissue-
- normalized first-pass area under the contrast-agent concentration curve (AUC-TN). The AUC-TN therefore has merit as a potential biomarker for diseases or treatments that impact rCBV. This
- 118 profile places requirements on Sites, Acquisition Devices, Contrast Injectors, Contrast Media,
- 119 Radiologists, Physicists, Technologists, Reconstruction Software, Image Analysis Tools and Image
- 120 Analysts involved in Site Conformance, Staff Qualification, Product Validation, Pre-delivery,
- 121 Periodic QA, Protocol Design, Subject Handling, Image Data Acquisition, Image Data
- 122 Reconstruction, Image QA, Image Distribution, Image Analysis and Image Interpretation.
- 123 The requirements are focused on achieving known (ideally negligible) bias and avoiding 124 unnecessary variability of the of the AUC-TN measurements.
- 125 The clinical performance is characterized by a 95% confidence interval for the AUC-TN true
- 126 change (Y₂-Y₁) in enhancing tumor tissue $(Y_2 Y_1) \pm 1.96 \times \sqrt{(Y_1 \times 0.31)^2 + (Y_2 \times 0.31)^2}$ and 127 in normal tissue $(Y_2 - Y_1) \pm 1.96 \times \sqrt{(Y_1 \times 0.40)^2 + (Y_2 \times 0.40)^2}$, where Y₁ is the baseline
- measurement and Y₂ is the follow-up measurement. These estimates are based on current
 literature values but may be updated based on future studies (see Section 2.2 for details).
- 130 This document is intended to help clinicians basing decisions on this biomarker, imaging staff 131 generating this biomarker, vendor staff developing related products, purchasers of such products 132 and investigators designing trials with imaging endpoints.
- 133 Note that this document only states requirements to achieve the claim, not "requirements on 134 standard of care." Conformance to this Profile is secondary to properly caring for the patient.
- 135 QIBA Profiles addressing other imaging biomarkers using CT, MRI, PET, and Ultrasound can be

136 found at qibawiki.rsna.org.

138 **2. Clinical Context and Claims**

139 Clinical Context

140 DSC-MRI is frequently used in clinical practice for measuring rCBV to evaluate brain tumor progression or response to therapy. rCBV may be used to assess true tumor viability after 141 142 therapy, allowing differentiation of pseudoprogression (PsP) (apparent progression when tumor is actually responding to therapy) and pseudoresponse (apparent response to therapy when 143 144 tumor is actually not responding) [1-3]. Pseudoresponse could be a factor in the discordance seen 145 between high response rates and prolonged progression free survival without increased overall 146 survival in GBM [4]. Some work has shown that DSC-MRI might predict outcome following anti-147 angiogenic therapy where temporal changes in rCBV might predict overall survival [5, 6]. DSC-MRI may also be useful for classifying tumor grade [7]. Patel, et al. [8] found that thresholds 148 149 separating viable tumor from treatment changes demonstrate relatively good accuracy in 150 individual studies. Finally, rCBV may also be of value in stratifying patients for different types of 151 therapy, as it may identify patients most likely to benefit from certain classes of therapeutic agents [9]. 152

153 While rCBV is the *clinical* marker, this profile focuses on measuring its imaging biomarker, which 154 is the Area Under the Curve-Tissue Normalized (AUC-TN), typically normalized to normalappearing white matter (NAWM) in the opposite hemisphere. This involves characterizing the 155 156 performance of DSC-MRI sequences to measure the change in signal intensity with injection of a 157 paramagnetic gadolinium-based contrast agent (GBCA). This profile also does not specify the 158 exact methods by which a software extracts key points in the signal-intensity curve to compute 159 the rCBV from the AUC-TN. This is an area of active research, and studies have shown good 160 agreement among software even among those that are proprietary [10].

161

162 An additional application of DSC-MRI is to estimate the 'leakiness' of vessels within a tumor, using the 'K2' coefficient, for which K2 is assumed to be proportional to the leakage rate [11]. Normal 163 brain has an intact blood brain barrier (BBB), and do not demonstrate signal intensity changes 164 165 due to extravasation of GBCA. In areas of BBB disruption, DSC-MRI will typically demonstrate 166 slow drift in signal intensity due to GBCA extravasation. Characterizing this leakage rate is usually 167 a critical step in calculating the AUC described above, and thus, the claims are closely linked. However, the literature supporting repeatability/reproducibility of K2 measurements is limited. 168 169 Furthermore, there are numerous techniques to correct for 'leakiness' [12, 13]. Therefore, K2 170 claims are not presented in the current profile.

171 Conformance to this Profile by all relevant staff and equipment supports the following claim(s):

- 172 Claim 1: For a measured change in Area Under the Curve-Tissue Normalized
- 173 (AUC-TN) in enhancing tumor tissue of $(Y_2 Y_1)$, the 95% confidence interval for
- 174 the true change is $(Y_2 Y_1) \pm 1.96 \times \sqrt{(Y_1 \times 0.31)^2 + (Y_2 \times 0.31)^2}$ [14, 15], where
- 175 Y_2 is the follow-up measurement and Y_1 is the baseline measurement.
- 176 Claim 2: For a measured change in Area Under the Curve-Tissue Normalized

- 177 (AUC-TN) in normal brain tissue of $(Y_2 Y_1)$, the 95% confidence interval for the
- 178 true change is $(Y_2 Y_1) \pm 1.96 \times \sqrt{(Y_1 \times 0.40)^2 + (Y_2 \times 0.40)^2}$, where Y₂ is the
- 179 follow-up measurement and Y_1 is the baseline measurement.

180 **2.1 Clinical Interpretation**

181 QIBA Claims describe the technical performance of quantitative measurements. The clinical 182 significance and interpretation of those measurements is left to the clinician. Some 183 considerations are presented in the following text.

The 95% confidence interval can be thought of as "error bars" or "noise" around the measurement of AUC-TN **change** in the *enhancing tumor* or in *normal tissue* [15]. Note that this does not address the biological significance of the change, just the likelihood that the measured change is real. We reiterate here that the boundaries represent the 95% CI on the measured change, assuming the images are obtained at 3 Tesla (3T), on the same scanner, using same software, same analyst and with careful attention to repeating similar image planes and technique. We focus on 3T since the claims were based on studies performed on a 3T system.

191 Clinical interpretation with respect to the magnitude of true change in <u>enhancing tumor</u>: 192 The magnitude of the true change is defined by the measured change and the error bars. If you 193 measure the AUC-TN to be 1.0 at baseline (Y₁) and 3.45 at follow-up (Y₂), then the measured 194 change is a 245% increase in AUC-TN (i.e., 100x(3.45-1.00)/1.00). The 95% confidence interval 195 for the true change is $100 \times (3.45 - 1.00) \pm 1.96 \times \sqrt{(1.00 \times 0.31)^2 + (3.45 \times 0.31)^2} = 27\%$ 196 to 463% increase in AUC-TN. This also assumes that the relationship is linear and that the slope 197 of the regression line of the measured values vs. true values is one.

Clinical interpretation with respect to the magnitude of true change in <u>normal tissue</u>: The magnitude of the true change in normal tissue is defined by the measured change and the error bars. If you measure the AUC-TN to be 1.0 at baseline and 3.45 at follow-up, then the measured change is a 245% increase in AUC-TN (i.e., 100x(3.45-1.00)/1.00). The 95% confidence interval for the true change is $100 \times (3.45 - 1.00) \pm 1.96 \times \sqrt{(1.00 \times 0.40)^2 + (3.45 \times 0.40)^2}$ = -37% to 527% increase in AUC-TN again noting the assumption of a linear relationship and slope of 1.0.

205 **2.2. Discussion**

While the Claims have been informed by an extensive review of the literature and expert consensus, they have not yet been fully substantiated by studies that strictly conform to the specifications given here. The expectation is that during field testing, data on the actual field performance will be collected and any appropriate changes made to the claim or the details of the Profile. At that point, this caveat may be removed or re-stated.

The claims are based on estimates of perfusion AUC-TN coefficient of variation (wCV) for regions of interests (ROIs) of specified range located in enhancing tumor or normal tissue. For estimating

- the critical % change, the % Reproducibility Coefficient (%RDC) is used: $2.77 \times wCV \times 100$ for
- which wCV=0.31 in enhancing tumor and wCV=0.40 in normal tissue [15]. We use the more

conservative wCV based on manual NAWM ROIs, rather than the higher precision values (wCV 215 216 approximately 0.1 to 0.2 for enhancing tumor and 0.1 to 0.25 for normal brain [15, 16] based on 217 automated standardization and normalization methods [17, 18] since these automated methods may not be readily available. Selection of "normal" brain may also be affected by how the 218 219 contralateral ROI is drawn. In papers of normal volunteers scanned 1-week apart, wCV was less 220 than 0.1 using automated methods and less than 0.2 for manual methods [19]. Differences in performance compared to the above patient studies [15, 16] are likely due to lower flip angle (30 221 222 degrees) used for the healthy subjects compared to the patient cohorts (90 degrees). Thus, using 223 automated approaches for AUC-TN calculations and test-retest, we can expect the RDC for 224 change in AUC-TN to be reduced (e.g. 0.1 and 0.2). It should be noted that some of the errors 225 might be due to differences in subject placement and physiology. In a study of healthy volunteers who were scanned multiple times in a single session[20], wCV was 0.18, but results might have 226 227 been confounded by multiple injections [21] and AUC values were not normalized and ROIs were 228 manually drawn.

229 A limitation of our claims is that it is based on a handful of studies due to the limited number of 230 published test-retest studies of DSC-MRI due to the risk of nephrogenic systemic fibrosis. In fact, 231 the Jafari-Khouzani [16] and Prah [15] papers are derived from overlapping patient cohorts, but 232 because of differences in processing have different wCV. Furthermore, because DSC-MRI requires 233 the injection of a GBCA, true repeat studies cannot be performed since the 2nd contrast agent 234 will inherently be performed under altered imaging conditions. In addition, the test-retest studies 235 were performed early on before consensus clinical recommendations were reached with 236 acquisition protocols different than what is used routinely in clinical practice. We tried to adjust 237 for this in the profile, under the assumption that the standard clinical practice protocols will lead 238 to higher precision than is stated in our claims.

It is critical to measure the lesion in a consistent fashion, and to have enough pixels to accurately represent the lesion. While it is recognized that there may be non-enhancing tumor, by convention, AUC-TN is measured in contrast-enhancing tumor. That means it is necessary to review the pre-contrast T1-weighted images to assure that all increased signal on post-contrast imaging is due to contrast enhancement. Once that has been determined, an ROI should be drawn to include at least a 1cm² area.

Some patients will have multiple lesions. This can present several problems. The first is that it may make it difficult to find a large region of normal appearing white matter, and that should be considered when measurements are reported. Second, the way to report multiple lesions will be context-dependent. In some cases, the maximum value may be the most relevant, likely representing the most aggressive lesion. In some cases, mean or minimum values may be more relevant. While multiple lesions are rather uncommon, planning for handling these cases is important.

The performance values in the claims reflect the likely impact of variations permitted by this Profile. The Profile does not permit <u>different</u> compliant actors (acquisition device, radiologist, image analysis tool, etc.) at the two timepoints (i.e., it is required that the same scanner or image analysis tool be used for both exams of a patient). If one or more of the actors are not the <u>same</u>, it is expected that the measurement performance will be worsened. The wCV used for the claims will need to be updated. Under the assumption that the various sources of variability are additive(an assumption that has not been validated), the wCV can be estimated as follows:

259

 $wCV = \sqrt{DSC_{variance} + Software_{variance} + Normalization_{Variance} + ROI_{variance}}$

DSC-MRI method variance is defined as inherent to the technique of measuring AUC of the DSC-260 261 MRI GBCA bolus measured using test/retest studies holding all other parameters constant. 262 Software variance includes variation in integration of AUC while Normalization Variance is 263 variance related to how the AUC values are normalized; these two can be linked if software 264 includes automated standardization. For example, some software use histogram equalization 265 [17] while others use automated NAWM selection [18] for standardization - both approaches 266 decrease wCV [15, 16]. Expected variance in measurements of NAWM ROI (using 1.8 mm radius) 267 was found to be approximately 20% [22]. Software variance could be measured using digital 268 reference objects (DROs). ROI variance is variance related to interrater placement of ROIs in 269 enhancing tumor or normal brain. ROI variance could be assessed by evaluating inter-rater 270 variance on the same patients. Inter-rater variation due to ROI placement has been estimated to 271 be approximately 30% for maximum AUC-TN (maximum AUC-TN in 4 or 6 ROIs of 1.8 mm radius), 272 43% for mean AUC-TN in one ROI and 35% in average of 3 ROIs [22]. Interobserver variance when 273 using manual NAWM and tumor ROI was reported to be approximately 30% for maximum AUC-274 TN method [23]. Scanner variance is variability of results across scanners and may be affected by 275 differences in hardware and acquisition protocol; this variance could be measured using a 276 physical phantom.

277 **3. Profile Activities**

282

The Profile is documented in terms of "Actors" performing "Activities". Equipment, software, staff, or sites may claim conformance to this Profile as one or more of the "Actors" in Table 1.

280 Conformant Actors shall support the listed Activities by conforming to all requirements in the281 referenced Section.

Actor Section Activity Site Conformance Site 3.0 Product Validation 3.2. **Acquisition Device** Pre-delivery 3.3. Periodic QA 3.5. Product Validation 3.2 **Contrast Injector** 3.3 Pre-delivery Periodic QA 3.5 Contrast Medium Product Validation 3.2 Staff Qualification 3.1 Radiologist Protocol Design 3.6 Image Interpretation 3.14 Physicist Staff Qualification 3.1 **Pre-delivery** 3.3 Periodic QA 3.5 Protocol Design 3.6 Staff Qualification 3.1. Technologist Subject Handling 3.8.

Table 1: Actors and Required Activities

	Image Data Acquisition	3.9.
	Staff Qualification	3.1
	Periodic QA	3.5
Image Analyst	Image Data Reconstruction	3.10
image Analyst	Image QA	3.11
	Image Distribution	3.12
	Image Analysis	3.13
Reconstruction Software	Product Validation	3.2
Reconstruction software	Image Data Reconstruction	3.10
Image Analysis Tool	Product Validation	3.2
Intrage Analysis 1001	Image Analysis	3.13

The requirements in this Profile do not codify a Standard of Care; they only provide guidance intended to achieve the stated Claim. Failing to conform to a "shall" in this Profile is a protocol deviation. Although deviations invalidate the Profile Claim, such deviations may be reasonable and unavoidable, and the radiologist or supervising physician is expected to do so when required by the best interest of the patient or research subject. How study sponsors and others decide to handle deviations for their own purposes is entirely up to them.

290 The sequencing of the Activities specified in this Profile are shown in Figure 1:

293 Figure 1: Dynamic Susceptibility Contrast MRI (DSC-MRI)- Activity Sequence

295 **3.0. Site Conformance**

This activity involves establishing the overall conformance of an imaging site to this Profile. It includes criteria to confirm the conformance of each of the participating Actors at the site.

298 <u>3.0.1 Discussion</u>

A site conforms to the Profile if each relevant actor conforms to each requirement assigned in the Activities of the Profile. Activities represent steps in the chain of preparing for and generating biomarker values (e.g. product validation, system calibration, patient preparation, image acquisition, image analysis, etc.).

Since a site may assess conformance actor by actor, a checklist document is available in Appendix
 E which extracts, for convenient reference, all the requirements in this Profile and regroups the
 requirements by Actor.

306 Sites may be able to obtain a QIBA Conformance Statement for some actors (e.g. Acquisition 307 Devices) attesting to their conformance to this Profile, rather than the site having to confirm

308 conformance themselves.

Parameter	Actor	Specification
Acquisition Devices	Site	Shall confirm all participating acquisition devices conform to this Profile.
Contrast Injector	Site	Shall confirm all participating contrast injectors conform to this Profile.
Contrast medium	Site	Shall confirm all participating contrast media conform to this Profile.
Radiologists	Site	Shall confirm all participating radiologists conform to this Profile.
Physicists	Site	Shall confirm all participating physicists conform to this Profile.
Technologists	Site	Shall confirm all participating technologists conform to this Profile.
Image Analyst	Site	Shall confirm all participating image analysts conform to this Profile.
Reconstruction. Software	Site	Shall confirm all participating reconstruction software conform to this Profile.
Image Analysis Tools	Site	Shall confirm all participating image analysis tools conform to this Profile.

309 <u>3.0.2 Specification</u>

310

311 **3.1. Staff Qualification**

312 This activity involves evaluating the human Actors (Radiologist, Physicist, and Technologist) prior

to their participation in the Profile. It includes training, qualification or performance assessments

that are necessary to reliably meet the Profile Claim.

315 <u>3.1.1 Discussion</u>

316 These requirements, as with any QIBA Profile requirements, are focused on achieving the Profile 317 Claim. Evaluating the medical or professional qualifications of participating actors is beyond the 318 scope of this profile. MR technologists or other imaging expert(s) performing DSC-MRI procedures should be MR-certified according to local regulations or institutional requirements. 319 320 These individuals should have prior experience in conducting DSC-MRI. The personnel should also 321 be experienced in clinical study related imaging and should be familiar with good clinical practices 322 (GCP). Competence in the performance of DSC-MRI should never be limited to a single individual 323 at the imaging center, as scheduled and unplanned personnel absences are to be expected in the 324 course of a DSC-MRI trial. In most clinical practice situations, and in the clinical research setting, 325 the image analyst may be a non-radiologist professional such as a medical physicist, biomedical 326 engineer, MRI scientist or image analyst. The Technologist is always assumed to be the operator 327 for subject scanning, while phantom scanning can be performed by a technologist, or physicist 328 or scientist. At some facilities, there may not be a Physicist, and in these circumstances the task 329 assigned to the Physicist may be subsumed by an individual with the qualifications described 330 below. NB: The same individual may assume multiple roles if qualifications are met.

331 <u>3.1.2 Specification</u>

Parameter	Actor	Specification
Qualification	Radiologist	Shall be a qualified individual with experience in clinical DSC acquisition and interpretation
Qualification	Physicist	Shall be a qualified individual with experience in establishing protocols on the MRI system and performing quality assurance checks on the MRI equipment.
Qualification	Technologist	Shall be a qualified individual with experience in clinical DSC acquisition, including use of power injector and administration of contrast material and familiar with good clinical practice
Qualification	Image Analyst	Shall be an individual trained in (1) understanding of key DSC acquisition principles of perfusion-weighted imaging and test procedures to confirm that related DICOM metadata content is maintained along the network chain from Scanner to PACS and analysis workstation, (2) assessing quality of acquired images, (3) placement of regions of interest in appropriate anatomical locations and (4) use of Reconstruction Software and Image Analysis Tools.

332

333 3.2. Product Validation

This activity involves evaluating the product Actors (Acquisition Device, and Image Analysis Tool) prior to their use in the Profile (e.g. at the factory). It includes validations and performance assessments that are necessary to reliably meet the Profile Claim.

337 <u>3.2.1 Discussion</u>

- Performance measurements of specific protocols are not addressed here. Those are included insection 3.6.2.
- 340 Segmentation may be performed automatically by a software algorithm, manually by a human
- observer, or semi-automatically by an algorithm with human guidance/intervention, for
- 342 example to identify a starting seed point, stroke, or region, or to edit boundaries.

343 <u>3.2.2 Specification</u>

Parameter	Actor	Requirement
Field Strength	Acquisition Device	Shall confirm field strength is 3 Tesla (3T)
Pulse sequence	Acquisition Device	Shall be capable of acquiring gradient echo data with echo planar imaging
MRI Equipment Specificatio	Acquisition Device	See Section 4.1. Assessment Procedure: MRI Equipment Specifications and Performance
Acquisition	Acquisition Device	Shall be capable of making validated protocols (designed and validated by the manufacturer and/or by the site) available to the technologist at scan time.
Protocol		Shall prepare a protocol conformant with section 3.6.2 "Protocol Design Specification"
	Acquisition Device	Shall record in the DICOM image header the actual values for the tags listed in the DICOM Tag column in sections 3.6.2 "Protocol Design Specification".
Image Header		Shall record actual timing and triggers in the image header by including the Contrast/Bolus Agent Sequence (0018,0012).
		Shall support recording in the image header (Image Comments (0020,4000) or Patient Comments (0010,4000)) information entered by the Technologist about the acquisition.
Image Data	Contrast Injector	Shall be capable of performing power injection with all the parameters set as specified in section 3.9 "Image Data Acquisition"
Acquisition	Contrast Media	Shall confirm gadolinium-based contrast agent (GBCA) used for study conforms with local and FDA safety guidelines.
Reading	Reconstruction Software	Shall be able to present the reader with both timepoints side-by-side for comparison when processing the second timepoint.
Paradigm		Shall re-process the first time point if it was processed by a different Reconstruction Software or Analyst.
Digital Reference	Reconstruction Software	Shall demonstrate linear performance and has expected wCV on digital reference objects. See Section 4.2. Assessment Procedure:

Object		Digital Reference Object.
	Reconstruction Software	Shall record the image analysis tool version.
AUC-TN and		Shall record AUC-TN and K2 images
K2 maps		Shall record ROIs used for normalization.
		Shall record parameters used for calculation of AUC-TN
Multiple	Image Analysis Tool	Shall allow multiple tumors to be measured.
Tumors		Shall either correlate each measured tumor across time points or
Turnors		support the analyst to unambiguously correlate them.
		Shall record the image analysis tool version.
		Shall record percentage AUC-TN change relative to baseline for each
	Imago Analysis	tumor
Recording	Tool	Shall record ROIs used
Recording		Shall record the volume of each ROI.
		Shall record the confidence interval of result for each AUC-TN change
		measurement

345 **3.3. Pre-delivery**

- 346 Standard scanner and contrast injector calibrations, phantom imaging, performance assessments
- 347 or validations prior to delivery of equipment to a site (e.g., performed at the factory) for routine
- 348 clinical service are beyond the scope of this profile but are assumed to be satisfied.

349 <u>3.3.1 Discussion</u>

350 3.3.2 SPECIFICATION

Parameter	Actor	Requirement
Scanner	Acquisition Device	Scanner shall meet vendor-established performance benchmark ranges for the given model
benchmark	Physicist	Shall qualify that device meets vendor-established performance benchmark ranges for the given model
Pulse	Acquisition Device	Shall be qualified by a physicist as capable of acquiring gradient echo data with single shot echo planar imaging (EPI) readout within vendor- established performance benchmark ranges
sequence	Physicist	Shall qualify device as capable of acquiring gradient echo data with single shot echo planar imaging (EPI) readout within vendor-established performance benchmark ranges
Injector performance benchmark	Contrast Injector	Injector shall meet vendor-established performance benchmark ranges for the given model and capable of injection rates as specified in section 3.9 "Image Data Acquisition"

351 **3.4. Installation**

Standard scanner and contrast injector calibrations, phantom imaging, performance assessments
 or validations following installation of equipment at the site for routine clinical service are beyond

the scope of this profile but are assumed to be satisfied. Periodic Q&A (section 3.5) is expected to be followed.

356 **3.5. Periodic QA**

This activity describes calibrations, phantom imaging, performance assessments or validations performed periodically at the site, but not directly associated with a specific subject, that are necessary to reliably meet the Profile Claim.

360 <u>3.5.1 Discussion</u>

The MRI scanner and receiver coils must undergo routine quality assurance and quality control processes (including preventive maintenance schedules) appropriate for clinical MRI applications.

The QIBA NIST DSC-MRI phantom, or a similar multi-compartment phantom with range of susceptibility (T2*) values appropriate for the DSC-MRI study to be performed, should be used if the Profile Claim given above is to be assured. Appendix F tabulates a standardized protocol in vendor-specific terms that can be used for scanning the DSC-MRI phantom. A recipe for creating such a phantom is provided in Appendix G.

- The phantom scans should be repeated on a regular interval (e.g., 3 months) during the course of the study. Ongoing image quality inspection on a per-scan basis is essential. Any changes to scanner equipment, including major hardware changes or any software version change, need to be documented and will result in the need for imaging qualification renewal.
- The power injector needs to be properly serviced and calibrated at regular intervals, as recommended by the particular vendor.
- 375 All scanner software version updates and hardware changes must be documented since changes
- in scanner sequences can affect data acquisition and reproducibility of longitudinal studies [24].

Parameter	Actor	Requirement
Scanner performance	Physicist	Shall assess scanner performance metrics are within vendor- established performance benchmark ranges for the given model.
benchmark		Shall document all hardware/software upgrades.
		Shall record the date/time of calibrations as recommended by the vendor.
	Acquisition Device	Shall meet vendor-established performance benchmark ranges for the given model.

377 <u>3.5.2 Specification</u>

Contrast	Technologist	Shall assess injector performance are within vendor-established
Injector		performance benchmark ranges for the given model.
Performance		Shall document all hardware/software upgrades.
Benchmark		Shall record the date/time of calibrations as recommended by the vendor.
	Contrast Injector	Shall meet vendor-established performance benchmark ranges for the given model.
Scanner Stability	Physicist	Shall perform periodic system QA using QIBA-NIST DSC phantom (see Appendix F). See Section 4.3. Assessment Procedure: Scanner Stability.
		Shall confirm correlation coefficient measurements between ΔR2* values in the QIBA-NIST DSC phantom measured with echo-planar imaging vs multi-echo gradient echo acquisition is within 98.4 to 99.3% for both inner and outer vials (See Appendix F.2)
		Shall confirm correlation coefficient measurements between $\Delta R2^*$ values in the QIBA-NIST DSC phantom measured with echo-planar imaging across multiple time points is at least 95% for both inner and outer vials. (see Appendix F.2)
Reconstruction	Image	Shall document all software upgrades and shall confirm
Software Upgrades	Analyst	performance within benchmark on digital reference objects
Image Analysis Tool Upgrades	lmage Analyst	Shall document all software upgrades

378 **3.6. Protocol Design**

379 This activity involves designing acquisition and reconstruction protocols for use in the Profile. It

includes constraints on protocol acquisition and reconstruction parameters that are necessary toreliably meet the Profile Claim.

382 <u>3.6.1 Discussion</u>

The Profile considers Protocol Design to take place at the imaging site, however, sites may chooseto make use of protocols developed elsewhere.

The approach of the specifications here is to focus as much as possible on the characteristics of the resulting dataset, rather than one particular technique for achieving those characteristics. This is intended to allow as much flexibility as possible for product innovation and reasonable adjustments for patient size (such as increasing FOV for larger patients), while reaching the performance targets. Again, the technique parameter sets in the Conformance Statements for Acquisition Devices and Reconstruction Software may be helpful for those looking for more guidance.

- 392 The claims of the profile is based on gradient-echo acquisitions with echo-planar imaging (EPI) • 393 readout. Spin echo EPI is an acceptable acquisition protocol but there is little existing 394 literature on repeatability and reproducibility and therefore GRE sequences are preferred. An active area of research is the development of new MRI acquisition techniques other than 395 396 single-shot EPI that can reduce spatial distortion or can improve spatial or temporal 397 resolution [25], but there are little existing studies of their repeatability and reproducibility. 398 These sequences are also not yet widely available clinically and thus not discussed in the 399 current profile.
- Studies employing digital reference objects highlight significant interaction between
 repetition time, flip angle and contrast agent dosing scheme and have been leveraged to
 identify optimal acquisition protocols [26].
- Clinical recommendations [27] for DSC-MRI do not recommend 90 degree FA, that was used to achieve our Profile claims [15], due to high T1 sensitivity that can contaminate the signal in conditions of disrupted BBB. Instead, FA of 60 to 70 degrees are recommended, as a tradeoff between SNR and T1-effects. Lower flip angles (around 35 degrees) reduce T1-effects, but result in lower SNR, which in turn can lead to reduced precision in AUC estimates in white matter. Based on simulation results, the expected variation in results compared to "ground truth" are [26]:

FA	TE (ms)	TR (s)	Preload Dose (fraction of standard dose)	Bolus Dose (fraction of standard dose)	Simulated Coefficient of Variation from Ground Truth
90	30	1.5	1	1	8.8%*
60	30	1.5	1	1	6.6%
30	30	1.5	1	1	6.8%
30	30	1.5	0	1	8.2%

411 *Unpublished 90 degree FA results using simulation approach as described by Semmineh et al

412 [26]. Assumes leakage correction applied to the disrupted BBB.

413 Note that the coefficient of variation results in the table are based on simulations of leakage 414 corrected AUC-TN values with respect to "ground truth", i.e., AUC-TN values not confounded by 415 disrupted BBB. The values are not reflective of expected test-retest CV values as those used in establishing the profile claims. However, it should be noted that the 90 degree FA with full pre-416 dose load has a greater degree of variation than acquisitions obtained with 60 degree FA, which 417 418 not surprisingly has the lowest degree of expected variation. Therefore, we recommend 60 419 degree FA, to meet the Profile claims. If patients are unable to tolerate 2 full doses, then using a 420 low FA, will likely have similar variability as that of the claims. Prospective test-retest studies at 421 low FA will be needed to properly assess the RDC.

422 <u>3.6.2 Specification</u>

Parameter Actor		Requirement	DICOM Tag
	Radiologist	Shall approve protocol developed by the Physicist to meet the requirements of this profile Shall ensure technologists have been trained on the requirements of this profile.	N/A
		Shall build a protocol that has been previously prepared in consultation with the Radiologist and validated for this purpose.	
Acquisition Protocol	Physicist	Shall confirm protocol is capable of covering area of interest, since most sequences cannot cover the entire brain and achieve sufficient temporal resolution to be clinically useful	N/A
		Shall clearly label and store protocol on MRI system for recall in repeat serial scans of patients.	
		Shall track edits to the protocol with version control and archive prior versions	
		Shall report if any parameters are modified beyond the specifications below.	
Imaging sequence	Physicist	Shall confirm imaging sequence is a Gradient Echo acquisition with Echo Planar Imaging Readout	N/A
Total Acquisition Time	Physicist	Shall confirm series acquisition duration is at least 120s.	N/A
Bolus Quality	Physicist	Shall confirm that the protocol achieves a bolus signal drop at least 10% from baseline when using specified contrast agent and dosage. (See Section 4.4)	N/A
Pixel Spacing	Physicist	Shall confirm that in-plane resolution is between 1.72 and 1.9 mm ²	0028,0030
Repetition Time (TR)	Physicist	Shall confirm Maximum TR = 1500ms	0018,0080
Acquisition Matrix	Physicist	Shall confirm Acquisition Matrix achieves required pixel spacing	0018,1310
Flip Angle	Physicist	Shall confirm Flip Angle (60)*	0018,1314
Field Strength	Physicist	Shall confirm Field Strength is 3T	0018,0087
Slice Thickness	Physicist	Shall confirm Slice Thickness (<= 5mm)	0018,0050
Echo time (TE)	Physicist	Shall confirm Echo Time (TE)=25-35 ms	0018,0081
Number of	Physicist	Shall confirm Number of excitations: 1	0018,0083

excitations			
Interslice Gap	Physicist	Shall confirm Interslice gap (max 1mm) (slice thickness – position of adjacent slice)	0018,0088
Field-of-view (FOV)	Physicist	Shall select Reconstruction Diameter to cover brain	0018, 1100
Acquisition Plane	Physicist	Shall confirm Axial or oblique plane of acquisition	0020,0037

*Flip Angle may differ depending on dose. See Discussion Section 3.6.1. Sources: [26, 28]
424

425 3.7. Subject Selection

This activity describes criteria and procedures related to the selection of appropriate imagingsubjects that are necessary to reliably meet the Profile Claim.

- 428 <u>3.7.1 Discussion</u>
- All subjects considered safe for clinical contrast-enhanced MRI may be considered for a
 DSC-MRI study. If a patient needs adjustment in GBCA dose beyond the recommended
 doses listed in this profile due to impaired kidney function, the claims of the profile may
 not apply.
- The QIBA DSC-MRI committee acknowledges that there are potential risks associated with the use of GBCAs. The default recommendations for intravenous GBCA administration that follow assume there are no known contraindications in a particular patient other than the possibility of an allergic reaction to the GBCA. The committee assumes that local standards for good clinical practices (GCP) will be substituted for the default in cases where there are known risks.
- Recent FDA safety communications
 <u>http://www.fda.gov/drugs/drugsafety/ucm455386.htm</u> highlight recent concerns
 regarding the accumulation of gadolinium in the brain. The DSC-MRI committee advises
 reference to these documents when considering the DSC-MRI clinical trial protocol.
- 443 • All subjects considered safe for clinical MRI may be considered for a DSC study. 444 Bioimplants and devices categorized with status "Unsafe" for MRI are considered an absolute contraindication [29-31]. Bioimplants and devices having status "Safe" or 445 446 "Conditional" for MRI should be evaluated per local MRI safety review procedures to 447 assess relative risk status. Despite having an acceptable risk status, metal-containing 448 bioimplants and devices near the tissue/organ/lesion of interest may introduce artifact and may not be suitable for quantitative DSC. Contraindications unrelated to bioimplants 449 450 should be considered as well. These include but are not limited to: 1st trimester pregnancy, claustrophobia, age and subject cooperability [32-34]. 451
- Beyond implanted devices, the presence of metal, air or large hemorrhage may result in significant susceptibility artifact that can influence the quantitative value of DSC measurements such that the claims made in this profile may not be achieved in some

- 455 patients and clinical situations. For this reason, it is recommended that quantitative DSC456 MRI examinations should not be performed shortly after surgical procedures or biopsies
 457 of lesions of interest.
- Although the vascular half-life of the GBCAs addressed by the Profile is approximately 90 min, it is strongly recommended that patients should not have received ANY gadolinium-based contrast agent within 24 hours before a DSC-MRI procedure as some residual contrast agent may remain in the lesion(s) of interest and the impact of such residual contrast agent on the within-patient coefficient of variation in enhancing tumors is unknown.
- For a specific study/trial, subject scheduling should be appropriately synchronized with
 the assayed subject condition (e.g., clinical state or therapeutic phase) per study design.

466 **3.8. Subject Handling**

467 This activity describes details of handling imaging subjects that are necessary to reliably meet468 the Profile Claim.

469 <u>3.8.1 Discussion</u>

- This technique requires rapid injection of intravenous contrast material, and as such,
 requires correct placement of a large bore IV catheter, or some other access for rapid
 injection (central IV line) ideally placed in the right antecubital fossa. An 18 gauge
 catheter (at least 0.8 mm inner diameter) or larger is recommended. The claims of the
 profile may not be met if smaller bore catheters are used.
- Injection through a port-a-catheter or permanent indwelling catheter is not
 recommended. What is critical is that the same injection site and catheter size be used
 for repeat studies, if at all possible.
- There is significant variability in contrast usage in tumors. The below specifications are
 based on expert consensus. In general, it is important to use the same contrast
 administration technique for a given subject through time.
- The injection rate for the **preload** is not considered important for meeting claims of this
 profile, and thus may be delivered either by hand injection such as by a nurse, or by
 power injector. The preload should be administered at least 5 minutes before the DSC MRI scan.

485 <u>3.8.2 Specification</u>

Parameter	Actor	Requirement
Subject Positioning	Technologist	Shall position the subject consistent with baseline. If baseline positioning is unknown, position the subject Supine if possible, with devices such as positioning wedges placed.
	Technologist	Shall use the prescribed intravenous contrast medium parameters.

		Shall use the same injection site and catheter size used for baseline study (if applicable)
Use of intravenous contrast		Shall use the same total volume of contrast medium administered, the concentration, the injection rate, and volume of saline flush used for baseline study (if applicable)
		Shall document the total volume of contrast medium administered, the concentration, the injection rate, and volume of saline flush used.
Artifact Sources	Technologist	Shall remove or position potential sources of artifacts (including EEG leads and other metal equipment) such that they will not degrade the MRI.

487 **3.9. Image Data Acquisition**

This activity describes details of the data acquisition process that are necessary to reliably meet the Profile Claim. It may also include calibrations, performance assessments or validations during acquisition (such as laying the subject on a calibrator or placing a pocket phantom next to the subject) that are necessary to reliably meet the Profile Claim.

492 <u>3.9.1 Discussion</u>

493 A power injector is required for DSC-MRI studies. Typical injection rates are 4-5 cc/sec into an 494 antecubital vein but there may be some variation due to clinical circumstances. The injection of 495 contrast media should be immediately followed with a 20 cc 'saline chaser' to push the contrast 496 agent into the heart, rather than staying in peripheral veins.

497 Appendix D tabulates a standardized DSC protocol for phantom evaluation in vendor-specific
 498 terms that might also be useful to harmonize patient DSC protocol across platforms.

499 <u>3.9.2 Specification</u>

Parameter	Actor	Requirement	DICOM Tag
Acquisition Protocol	Technologist	Shall select a protocol that has been previously prepared and validated for this purpose (See section 3.6.2 "Protocol Design Specification"). For longitudinal studies, shall confirm patient is scanned on the same scanner as previous studies using the same parameter settings	
		Shall collect suitable localizer (scout) images at the start of exam to confirm proper coil placement and selection of appropriate region to image	

1			
		Shall report if any parameters are modified beyond the specifications in section 3.6.	
		Shall confirm for the specified TR, that the acquisition protocol covers as much of the tumor as possible. It is critical to not increase the TR to include more slices.	
Image Header	Technologist	Shall enter on the console any factors that adversely influenced subject positioning or limited their ability to cooperate (e.g., remaining motionless, agitation in subjects with decreased levels of consciousness, subjects with chronic pain syndromes, etc.).	Image Comments (0020,4000) or Patient Comments (0010,4000)
Scan Plane (Image Orientation)	Technologist	Shall set consistent with baseline (if applicable).	Image Orientation Patient (0020,0037)
Acquisition Field of View (FOV)	Technologist	Shall set consistent with baseline (if applicable).	Reconstruction Diameter (0018, 1100)
Number of slices	Technologist	Shall set consistent with baseline (if applicable). Otherwise, shall confirm number of slice locations provides coverage of tumor.	
Use of intravenous contrast injection delay	Technologist	Shall wait pre-specified number of phases (at least 60s) before bolus injection	
Contrast injection rate	Technologist	Shall set contrast injection rate on power injector to be 4 to 5 cc/sec unless clinical circumstances require a different rate.	
Use of intravenous contrast flush	Technologist	Shall inject at least 20cc of saline immediately after the contrast medium bolus through the same line and venous access point	
Image data reconstruction	Technologist	Shall post-process images either in-line if the acquisition device has available image analysis or transfer images to an off-line analysis workstation.	

502 **3.10. Image Data Reconstruction**

503 This activity describes criteria and procedures related to producing images from the acquired

505 <u>3.10.1 Discussion</u>

506 Once the images are acquired, the MRI scanner produces a 4D series of images reflecting the 507 intensity profile before, during and after the bolus injection. These images must be processed to 508 compute the 'AUC-TN' and 'K2' [11] images from the 4D series of images.

509 The basic steps required include determination of the baseline signal intensity (intensity prior to contrast agent appearance), conversion from acquired T2* data to the R2* signal, correctly 510 511 determining the intensity/shape of intensity curve as the bolus passes through the tissue, and 512 determination of intensity changes after bolus. The latter may not be at the same intensity as the 513 pre-contrast baseline and may also not be a constant intensity due to continued leakage of 514 contrast agent out of the intravascular space and into the tissue. Correctly characterizing this 515 leakage rate is critical to characterizing the correct shape of the curve and because the leakage 516 rate may be biologically useful as a biomarker.

517 This profile does not specify the exact methods by which software implements the above steps. 518 This is an area of active research, and studies have shown good agreement among software even 519 among those that are proprietary [10]. In general, it is expected that most software will follow 520 the steps described in Section 3.10.2 to calculate AUC and K2. In areas of intact BBB, K2 is 521 approximately 0, but with increasing leakage, K2 may increase or decrease depending on the 522 relative T1 and T2 effects [12] and can also vary depending on the tumor. There are alternative 523 methods to correct for leakage [13] but the claims in the current profile do not cover them. Some 524 software utilizes an arterial input function (AIF) to measure AUC. The effects of AIF selection on 525 AUC remain unclear and is beyond the scope of the profile.

526 The software used to produce parametric images from the DSC-MRI acquisition is a critical 527 element of the analysis leading to optimal clinical interpretation. The software used is typically 528 proprietary and also is updated on a regular basis. Therefore, it is not possible for this profile to 529 specify the software analysis method, as one cannot know the implementation. We recommend 530 downloading digital reference objects (DROs) from http://qibadscdro.rsna.org/home that have 531 known values, and then applying your preferred software to that data in order to assure valid 532 results. The variation of results based on the DRO for the noise of your equipment should be 533 added to the expected variance of the tissue of interest and RDC for measured change calculated 534 as described in 2.2.

535 The tissue normalization step for calculating AUC-TN involves selecting an ROI from contralateral 536 NAWM and normalizing the calculated AUC with mean AUC values in the ROI. While various 537 factors such as pulse sequence parameters, leakage correction methods and different post-538 processing kinetic modeling approaches can result in variability of AUC-TN measurements, the 539 method of semi-quantification using AUC normalization is perhaps the most important [35]. 540 Different methods have been proposed regarding the tumoral and contralateral ROI selection 541 that is subject to wide variation [8, 22, 23, 36, 37]. Despite the fact these methods are user-542 friendly and feasible in daily practice, a well-known limitation is suboptimal repeatability and 543 reproducibility [23]. An evolving alternative method that could eliminate the need for user-544 defined normalization is a technique where AUC maps are transformed to a standardized intensity scale [15, 17, 35]. A main drawback is that this algorithm is currently not widely availableacross software packages.

547 Automated approaches have also been used to select ROIs for tissue normalization [38, 39] which 548 can potentially improve reproducibility. In a study by Bell et al [38], the NAWM coefficient of 549 variation across subjects for the radiologist-drawn ROIs was 0.30, whereas it decreased to 0.18

when automated approaches were used [22, 23, 38, 40].

551 Since many centers may not have access to specialized software that automates the image 552 reconstruction, specifications for manual input to satisfy the claims in this profile are provided in 553 3.10.2.

554 <u>3.10.2 Specification</u>

555

Parameter	Actor	Requirement
Pre-Bolus	Image Analyst	Shall visually identify and document pre-bolus baseline. See
Baseline		Section 4.4. Assessment Procedure: Pre-bolus baseline
Post-Bolus	Image Analyst	Shall visually identify and document post-bolus baseline. See
Time-point	Intage Analyst	Section 4.5. Assessment Procedure: Post-bolus Time-point
		Shall use the same procedural steps for image
AUC and K2 maps		reconstruction of AUC-TN and K2 map generation for all
calculation	image Analyst	subjects and time points. See Section 4.6. Assessment
		Procedure: AUC-TN and K2 maps calculation.
	Image Analyst	Shall visually select an ROI to be used to normalize AUC
Newsellestien		values to create AUC-TN maps. Created AUC-TN and ROI
Normalization		shall be saved. See Section 4.7. Assessment Procedure:
		Normalization.
	Deservation	Shall be able to calculate and save AUC-TN and K2 maps with
AUC-IN and	Reconstruction	either manual input data from the Image Analyst or
K2 maps	Software	automated calculation of above parameters. See Section 3.2.
AUC-TN and	Image Analyst	Shall use the same software to calculate AUC-TN and K2
K2 maps	image Analyst	maps

556

557 **3.11. Image QA**

This activity describes criteria and evaluations of the images that are necessary to reliably meetthe Profile Claim.

560 <u>3.11.1 Discussion</u>

561 **Tumor Size** can affect the bias and precision of measurements [41]. Both theoretical 562 considerations and the groundwork projects done by QIBA indicate that for tumors that are small, 563 errors in measurement represent a greater percentage of the measured size. For tumors that are 564 smaller than the limits defined in this profile, there may not be enough pixels to accurately 565 represent the lesion. For tumors that are extremely large, the limitations on measurement are 566 based less on imaging physics and more on anatomy. Such tumors are likely to cross anatomical 567 boundaries and abut structures that make consistent segmentation difficult.

568 **Tumor Margin Sharpness** refers to the clarity with which the boundary of the tumor can be 569 discerned from the surroundings. Conspicuity can directly impact the ability to place ROIs. 570 Conspicuity problems can derive from poor contrast enhancement, from the inherent texture, 571 homogeneity, or structure of the tumor, or from attachment of the tumor to other structures.

572 **Imaging Artifacts:** Poor quality data may be grounds to reject individual datasets since artifacts 573 can alter apparent size/shape/volume of tissues of interest thereby confound ROI definition, as 574 well as adversely affect AUC-TN values.

575 <u>3.11.2 Specification</u>

Parameter	Actor	Requirement
Tumor Size	lmage Analyst	Shall confirm that tumor longest in-plane diameter is between 10 mm and 100 mm. (For a spherical tumor this would roughly correspond to a volume between 0.5 cm ³ and 524 cm ³ .)
Tumor Margin Conspicuity	lmage Analyst	Shall confirm the tumor margins are sufficiently conspicuous to place ROIs.
Patient Motion Artifacts	lmage Analyst	Shall confirm the images containing the tumor are free from artifact due to patient motion that are not correctable with motion correcting algorithms. See Section 4.8. Assessment Procedure: Patient Motion
Bolus Profile	lmage Analyst	Shall confirm that the bolus profile can be detected in individual voxels compared to signal fluctuation. See Section 4.9. Assessment Procedure: Bolus Profile
Susceptibility Artifacts	lmage Analyst	Shall confirm the images containing the tumor are free from artifact due to paramagnetic objects, materials or anatomic positioning. See Section 4.10. Assessment Procedure: Susceptibility Artifacts.
Ghost/parallel imaging artifacts	lmage Analyst	Shall confirm tissue of interest is not obscured by discrete ghosts from extraneous signal sources along phase-encode direction
Severe spatial distortion	Image Analyst	Shall confirm tissue of interest are free from severe spatial distortion due to poor magnet homogeneity [42, 43]
AUC-TN Measurability	lmage Analyst	Shall disqualify any tumor that might reasonably degrade the consistency and accuracy of AUC-TN measurement. Conversely, if artifacts are present but the analyst is confident and prepared to edit the ROIs to eliminate the impact, then the tumor might be judged conformant to the Profile.
Consistency	Image	Shall confirm that the image processing is similar to baseline in terms

with Baseline	Analyst	of processing parameters
		Shall reprocess the images if baseline image was processed by a different Image Analysis Tool or Analyst
		unterent image Analysis foor of Analyst.

578 **3.12. Image Distribution**

579 This activity describes criteria and procedures related to distributing images that are necessary 580 to reliably meet the Profile Claim.

581 <u>3.12.1 Discussion</u>

582 Archiving and data distribution procedures are recommended so that all analysis results can be 583 recomputed for verification and validation purposes. In addition to saving of all original images 584 in DICOM formats, the following information must be archived along with the image data:

- Image Reconstruction: All information used for Image Reconstruction (see Section 3.10),
 including any user specified parameters, software version, and ROIs. In addition, all
 computed maps (AUC-TN, K2), should be saved in DICOM format.
- Registration: Recorded parameters and user inputs required for registration, if used.
 Time-series image registration may be used to align data spatially over time. Any parameters which control the performance of the registration algorithm (metric used, optimization parameters, user click-points/sub regions used for alignment, etc) must be stored in suitable format. It is preferable to save the registration transform parameters so that identical registration can be reproduced in a multi-center environment.
- Interpretation results: All ROIs where analysis is performed, and statistics are computed
 should be saved. All interpretation of results should be saved for purposes of verification
 and audit.
 - Secondary DICOM images: If Image Reconstruction relies on other DICOM images, these DICOM images need to also be archived.

599 3.12.2 SPECIFICATION

600

597

Parameter	Actor	Requirement
	Image	Shall archive raw source DSC-MRI data and any secondary DICOM series
	Analyst	used for analysis to be available for verification and validation
	Imago	Shall archive all calculated AUC-TN (and K2) maps as well as all
	Applyct	parameters used for the computation (e.g. number of baseline points,
κz	Analyst	integration duration, etc)
Regions of	Image	Shall save all ROIs used for analysis or statistics. See Section 3.10.1 for a
Interest (ROI)	Analyst	discussion of how to place and impact on performance
Degistration	Image	Shall save all parameters used for time-series image registration and
Registration	Analyst	registration to anatomical images (if applicable)
Interpretation	Image	Shall save all interpretation of results made by Radiologist for purposes of
Results	Analyst	verification and audit

601 **3.13. Image Analysis**

This activity describes criteria and procedures related to producing quantitative measurementsfrom the images that are necessary to reliably meet the Profile Claim.

604 <u>3.13.1 Discussion</u>

Image analysis software typically processes the 4D DSC-MRI data set to produce the AUC-TN and K2 images (see section 3.10). Once these are calculated, it is important to measure tumors in the correct fashion. One of the first steps is that the images must be co-registered to the Post-Contrast T1-weighted image [44]. Commonly, the multiple 3D images in the 4D DSC-MRI dataset are summed together, and that is used to create the transformation matrix that is used to coregister the DSC-MRI to the T1-weighted image.

611 Once that is done, the contrast-enhancing component is then used for measurement. Depending 612 on the software used for segmentation, in some cases, the user selects a threshold or draws an 613 ROI on the post-contrast T1-weighted image that encompasses the contrast-enhancing portion. 614 Interrater variability can lead to loss of repeatability and reproducibility [22, 23], which might be 615 mitigated by having a single reader. However, for large scale clinical trials this will likely not be 616 feasible. Using software that automatically produce a contrast-enhancing lesion segmentation 617 will compensate for this source of variance. Otherwise one can calculate the interobserver 618 variance and update expected wCV as described in Section 2.2.

Some patients will have multiple lesions. This can present several problems. The first is that it may make it difficult to find a large region of normal appearing white matter, and that should be considered when measurements are reported. Second, the way to report multiple lesions will be context dependent. In some cases, the maximum value may be the most relevant, likely representing the most aggressive lesion. In some cases, mean or minimum values may be more relevant. While multiple lesions are rather uncommon, planning for handling these cases is important.

626 Once the contrast-enhancing lesion is segmented, the pixels corresponding to that are selected from the AUC-TN images. There are at least 5 accepted methods for reporting values measured 627 628 within the contrast-enhancing lesion ROI: the mean value, the 95%-ile, the fractional tumor 629 burden, the % of pixels above white matter, and maximum mean value of 4 to 6 ROIs (radius of 630 1 pixel) [22]. Each of these methods have challenges. Since both tumor and pseudoprogression 631 can show enhancement, one should expect to have pixels of both types in the ROI. In that case, 632 computing the mean value will be the average of the mix of both tissue types and unless one is 633 dominant, the result may be misleading. Mean values may have less clinical value because they 634 may combine areas of therapy effects as well as tumor that both enhance. The same is true for 635 percent above white matter. The 95%-ile method attempts to address this by reporting how 636 much above white matter, the brightest parts are. The challenge with this method is that it is 637 very susceptible to noise—with a low-resolution matrix, an ROI may be only 100 pixels. In that 638 case, the 95%-ile value would depend on just 1 pixel, and thus suffers from high variability. The

- 639 maximum mean value of 4 to 6 ROIs method have been shown to have better wCV (0.30) than
- 640 mean value of a single ROI (wCV=0.43).

641 3.13.2 SPECIFICATION

642

Parameter	Actor	Requirement
ROI Determination	lmage Analyst	Shall segment the region of interest (ROI) measured in enhancing brain tumor tissue as identified on the pre-contrast versus post-contrast T1- weighted images and placed by the same analyst as the baseline scan (if applicable)
		Shall segment an ROI volume that is at least a 1cm ² area
		Shall use the same software to place ROIs and measure ROI values
Image	Image	Shall align the AUC-TN image to the T1 post-contrast image and save
Registration	Analyst	transformation parameters.
Mean value	Image	Shall measure the mean of AUC-TN values in the ROI in the tissue of
	Analyst	interest
Results Recording	Image Analysis Tool	Shall measure ROI metrics based on manually or automatically delineated ROIs and record results as specified in Section 3.2

643

644 **3.14. Image Interpretation**

This activity describes criteria and procedures related to clinically interpreting the measurementsand images that are necessary to reliably meet the Profile Claim.

647 <u>3.14.1 DISCUSSION</u>

In general, increased values of AUC-TN suggest tumor presence, and increasing values are linked
 with tumor progression. Conversely, areas of low AUC-TN are associated with dead or dying
 tissue. In areas of low blood flow or volume, AUC-TN value may not be reliable. The use of specific
 thresholds for AUC-TN will depend on the metric applied to the ROI.

652 <u>3.14.2 Specification</u>

653

Parameter	Actor	Requirement
AUC-TN Change	Radiologist	Shall confirm all steps were performed to interpret if there is a valid change consistent with a reproducibility coefficient within the enhancing tumor or normal brain tissue

654

656 **4. Assessment Procedures**

Most of the requirements described in Section 3 can be assessed for conformance by direct observation, however some of the performance-oriented requirements are assessed using a procedure. When a specific assessment procedure is required or to provide clarity, those procedures are defined in subsections here in Section 4 and the subsection is referenced from the corresponding requirement in Section 3.

662 **4.1. Assessment Procedure: MRI Equipment Specifications and Performance**

Conformance with this Profile requires adherence of MRI equipment to U.S. federal regulations 663 or analogous regulations outside of the U.S., MRI equipment performance standards outlined in 664 American Association of Physicists in Medicine and/or by the American College of Radiology^{*} as 665 well as guality control benchmarks established by the scanner manufacturer for the specific 666 667 model. These assessment procedures include a technical performance evaluation of the MRI 668 scanner by a gualified medical physicist or MRI scientist at least annually. Evaluated parameters 669 include: magnetic field uniformity, patient-handling equipment, gradient and RF subsystems 670 safety, calibration and performance checks. Periodic MR quality control must monitor image 671 uniformity, contrast, spatial resolution, signal-to-noise and artifacts using specific test objects 672 and procedures (e.g., ACR phantom and QA procedure). In addition, preventive maintenance at 673 appropriate regular intervals must be conducted and documented by a qualified service 674 engineer.

675 Gradient subsystems are *explicitly* calibrated to properly encode 3D space. Performance procedures indicated above assess spatial encoding guality, although DSC-MRI performance 676 677 requires additional tests detailed in Appendix F. Key quantitative DSC-MRI performance metrics 678 include: susceptibility bias at magnet isocenter, random error within ROI (precision), SNR as a 679 function of contrast agent *concentration*, ΔR2* dependence on *concentration* and spatial position 680 from isocenter. To conform to this Profile, system performance benchmarks for these metrics 681 are provided in Appendix F to ensure negligible contribution of technical errors to the above defined confidence intervals measured for tissue. These benchmarks reflect the baseline MRI 682 683 equipment performance in clinical and clinical trial settings which produced the data used to 684 support the Claims of this Profile. To establish tighter confidence bounds for AUC-TN metrics, additional technical assessment procedures may be introduced according to specific clinical trial 685 686 protocol.

687 *<u>http://www.acr.org/~/media/ACR No Index/Documents/QC</u>
 688 Manual/2015 MR QCManual Book.pdf.

689 **4.2. Assessment Procedure: Digital Reference Object**

The assessor shall verify that the reconstruction software performs within expected limits on the digital reference object. One example Digital Reference Object is available at: <u>http://qibadscdro.rsna.org/home</u>. The assessor shall measure the variance of their software on a DRO, for the signal to noise level measured on their acquisition and use that measure as the Software_{Variance} to update expected RDC (see Section 2.2). It is expected that the software should 695 produce a linear predicted value given specified values into the DRO. It is recommended that at

least 5 values be used to assess for linearity, in the range of expected clinical values such as from0.5 up to 2.5.

698 4.2.1. Assessment Procedure: Linearity

The assessor should test for linearity in software performance and that the slope is 1. Linearity is the "ability to provide measured quantity values that are directly proportional to the value of the measurand in the experimental unit" [45]. To assess linearity, the measurements (Y values) are regressed on the true values (X values). If the relationship between Y and X is well explained by a line, then the assumption of linearity is met.

Ideally, to establish linearity with slope equal to 1, five truth values (0.5, 1, 1.5, 2,3) shall be
 assessed, each with five repetitions. The slope may then be assessed by the following procedure:

- For each case, calculate the "measured value" (denoted Y_i), where *i* denotes the *i*-th case. Let X_i denote the true value for the i-th case. Fit an ordinary least squares (OLS) regression of the Y_i 's on X_i 's. A quadratic term is first included in the model to rule out non-linear relationships: $Y = \beta_0 + \beta_1 X + \beta_2 X^2$. If $|\beta_2| < 0.5$, then a linear model should be fit: $Y = \beta_0 + \beta_1 X$, and R² estimated. Let $\widehat{\beta_1}$ denote the estimated slope. Calculate its variance as $\widehat{Var}_{\beta_1} = \left\{ \sum_{i=1}^{N} (Y_i - \widehat{Y}_i)^2 / (N - 2) \right\} / \sum_{i=1}^{N} (X_i - \overline{X})^2$, where \widehat{Y}_i is the fitted value of Y_i from
- 712 the regression line and \overline{X} is the mean of the true values. The 95% CI for the slope is $\widehat{\beta_1} \pm$
- 713 $t_{\alpha=0.025,(N-2)df}\sqrt{Var_{\beta_1}}.$

The absolute value of the estimate of β_2 should be <0.50 and R-squared (R2) should be >0.90. The 95% CI for the slope should be completely contained in the interval 0.95 to 1.05.

716 4.2.2. Assessment Procedure: Within Subject Coefficient of Variance (wCV)

The assessor shall calculate the wCV of AUC_TN measured with the software on a DRO using at least 30 simulated tissue specimens ("cases") of AUC_TN simulated within enhancing tumor and in normal tissue, each measured twice. AUC_TN for enhancing tumor is approximately 1.65±0.83 and for healthy cortical tissue 1.51±0.32 [16]. wCV can then be measured as follows:

- 7211. Make measurements on N cases. For each case, measure the AUC_TN at timepoint $1(Y_{i1})$ 722and at time point $2(Y_{i2})$ where *i* denotes the *i*-th case (*i*=1,2, ...N).
- 723 2. For each case, calculate the mean and wSD²:

724
$$\overline{Y_i} = (Y_{i1} + Y_{i2})/2; wSD_i^2 = (Y_{i1} - Y_{i2})^2/2$$

7253. Estimate wCV:

$$wCV = \sqrt{\sum_{i=1}^{N} \left(wSD_i^2 / \overline{Y}_i^2\right) / N}$$

727 4. Estimate %RDC:

728

726

$$\widehat{\%RDC} = 2.77 \times wCV$$

- 5. Calculate test statistic and assess compliance. The null hypothesis is that the RDC does not satisfy the requirement in the Profile (i.e. the RDC is too large); the alternate hypothesis is that the RDC does satisfy the requirement. The test statistic T is:
- $T = \frac{N \times (\% RDC^2)}{\delta^2}$

733 where δ is either 0.31 or 0.40 (depending on whether simulation of AUC_TN as enhancing 734 or normal tissue respectively). Compliance with the claim is shown if $T < \chi^2_{\alpha,N}$, where 735 $\chi^2_{\alpha,N}$ is the α -th percentile of a chi-square distribution with N dfs (for a one-sided test with

736 α type I error rate).

737 **4.3. Assessment Procedure: Scanner Stability**

For a given MRI system, stability shall be assessed near isocenter using a quantitative DSC-MRI phantom. This phantom should contain media with known susceptibility properties. A recipe for making such a phantom is provided in Appendix G. Instructions for performing phantom experiments and data analysis can be found:

742 http://qibawiki.rsna.org/index.php/Perfusion, Diffusion and Flow-MRI Biomarker Ctte

Experiments should be repeated at least 24 hours later in a separate scan session. ICC between
 ΔR2* values measured with EPI-sequences at this second session compared to prior session shall
 be calculated and recorded for both inner vials and outer vials.

751 **4.4. Assessment Procedure: Pre-bolus Baseline**

752 The assessor shall identify the last point prior to a definite change in signal intensity due to bolus 753 passage marked by a decrease if viewing raw T2* signal intensity or increase if viewing an R2* 754 image. An example is shown in Figure 4-1. This entails the following steps: 1) drawing a large ROI 755 to cover most of an imaging slice (typically chosen from the middle slice); 2) visualize the mean 756 signal intensity of the curve; 3) if dummy or discarded acquisitions were not used, there shall be 757 a need to specify the number of timepoints to skip before the acquisition reached equilibrium; 758 4) identify point of maximum drop after the baseline; 5) work backwards from point of minimum 759 signal intensity or maximum drop to determine when the start of the bolus arrived prior to 760 definite change in signal; 6) calculate mean and standard deviation of values between skip and 761 pre-bolus baseline; 7) work backwards from point of maximum drop to where the signal is within 1 standard deviation of the measured mean baseline value; 8) Repeat steps 6 and 7 until the 762 763 calculated Pre-bolus Baseline stops changing.

764 4.5. Assessment Procedure: Post-bolus Time-point

765 The assessor shall visually identify the first time point after the Maximum Drop in signal when

Figure 4-1 Example of time points determination after placement of ROI (large white box) on slice of interest.

the signal intensity plateaus as the Post-Bolus time-point (see Figure 4-1), where the slope of

the curve is approximately 0. The signal intensity may also show a

768 continued gradual signal enhancement if there is contrast leakage, or

769 small oscillatory peaks due to recirculation after this timepoint (see

Figure 4-2). For either case, the assessor shall select the Post-Bolus

time-point to be the first timepoint the signal intensity reaches within

1 standard deviation, σ_b , of the mean Pre-bolus baseline signal, S_b.

773 Others have used a set number of timepoints (e.g. 10) from the last

acquired time point [11]. The assessor shall calculate S_b as the mean

775 value of the Pre-bolus baseline timepoints after discarding the

777
$$S_b = \frac{1}{N_b} \sum_{skip+1}^{Pre-bolus}$$

778 and the standard deviation as:

780 to determine which voxels are enhancing.

781

782 It is important to note that the Post-bolus time-point does not

783 determine the end of integration. The assessor shall typically set End-of-integral time point to

S(t)

784 the last time point of S(t).

785 4.6. Assessment Procedure: AUC-TN and K2 maps calculation

 $\sigma_b = \sqrt{\frac{\sum (S(t) - S_b)^2}{N_b}}$

786 The assessor shall use the mean Pre-bolus baseline determined in Section 4.4 to convert T_2^*

ranker signal intensity values, S(t) to an R_2^* curve using the following formula: $R_2^*(t) = -1/TE \ln S(t)/S_b$.

The assessor shall calculate the uncorrected AUC (uAUC) of the R2*(t) curve by integrating from

789 the end of the Pre-bolus timepoint to End-of-Integral time point. This integration shall be

Figure 4-2 Example of post-bolus signal enhancement
- 790 performed using the trapezoidal rule [11, 15].
- The assessor shall calculate the AUC after leakage-correction [11, 13] using the following formula:

793
$$AUC = uAUC + K_2 \int_0^T dt'' \int_0^{t''} \overline{R_2^{\star}}(t') dt'$$

794 where T is the End-of-Integration time point and K_2 is calculated based on the following formula:

$$\widetilde{R_2}^*(t) = K_1 \overline{R_2}^*(t) - K_2 \int_0^t \overline{R_2}^*(t') dt$$

where $\overline{R_2}^{*}(t)$ is the average of $R_2^{*}(t)$ voxels without enhancement more than 2 standard deviations compared to voxel's baseline intensity, S_b. Voxels with signal intensity enhancement shall be determined using the average of time points between the Post-bolus Time-point to Endof-Integration time-point. K₁ and K₂ shall be calculated using a linear least squares fit of the above equation.

801 4.7. Assessment Procedure: Normalization

The assessor shall create an ROI that is approximately 1 cm³ in the NAWM of the brain opposite from the lesion of interest on the same slice or use automated approaches. In the case that the lesion is in both hemispheres, the ROI may be placed more posteriorly, as far from the lesion as possible. The ROI must NOT include gray matter.

806 4.8. Assessment Procedure: Patient Motion

The assessor shall view the images over time at each slice location as a cine sequence to identify patient motion.

809 4.9. Assessment Procedure: Bolus Profile

- 810 The assessor shall measure the mean signal drop in the whole brain (see Figure 4-1). The assessor
- shall indicate that the bolus is of poor quality it the Maximum Drop is less than 10% of mean Pre-
- 812 bolus baseline, S_b [46].

813 **4.10. Assessment Procedure: Susceptibility Artifacts**

The assessor shall identify artifacts as regions of signal dropout or signal increases that is not anatomically consistent. The assessor shall confirm the images containing the tumor are free from artifact due to metal or blood near the surgical site (including small metal filings that may be imperceptible) as well as normal structures like bone and air that can compromise values near the periphery of the brain.

819

791

820 **5. Conformance**

- To conform to this Profile, participating staff and equipment ("Actors") shall support each activity assigned to them in Table 1 in Section 3.
- 823 To support an activity, the actor shall conform to the requirements (indicated by "shall language")
- 824 listed in the Specifications table of the activity. Each activity has a dedicated subsection in Section
- 825 3. For convenience, the Specification table requirements have been duplicated and regrouped
- by actor in the form of a checklist in Appendix E.
- Some requirements reference a specific assessment procedure in section 4 that shall be used toassess conformance to that requirement.
- 829 If a QIBA Conformance Statement is already available for an actor (e.g. your analysis software), 830 you may choose to provide a copy of that statement rather than confirming each of the 831 requirements in that Actors checklist yourself.
- Formal claims of conformance by the organization responsible for an Actor shall be in the formof a published QIBA Conformance Statement.
- Vendors publishing a QIBA Conformance Statement shall provide a set of "Model-specific Parameters" (as shown in Appendix D) describing how their product was configured to achieve conformance. Vendors shall also provide access or describe the characteristics of the test set used for conformance testing.
- 838
- 839

840 **References**

- Prager, A.J., et al., Diffusion and perfusion MRI to differentiate treatment-related
 changes including pseudoprogression from recurrent tumors in high-grade gliomas with
 histopathologic evidence. AJNR Am. J. Neuroradiol., 2015. 36(5): p. 877-885.
- Wen, P.Y., et al., Updated response assessment criteria for high-grade gliomas: response
 assessment in neuro-oncology working group. J. Clin. Oncol., 2010. 28(11): p. 1963-1972.
- Tsien, C., et al., Parametric response map as an imaging biomarker to distinguish
 progression from pseudoprogression in high-grade glioma. J. Clin. Oncol., 2010. 28(13):
 p. 2293-2299.
- 4. Gilbert, M.R., et al., *A randomized trial of bevacizumab for newly diagnosed glioblastoma.* N. Engl. J. Med., 2014. **370**(8): p. 699-708.
- 852 5. Harris, R.J., et al., *MRI perfusion measurements calculated using advanced*853 *deconvolution techniques predict survival in recurrent glioblastoma treated with*854 *bevacizumab.* J. Neurooncol., 2015. **122**(3): p. 497-505.
- 855 6. Schmainda, K.M., et al., Dynamic susceptibility contrast MRI measures of relative
 856 cerebral blood volume as a prognostic marker for overall survival in recurrent
 857 glioblastoma: results from the ACRIN 6677/RTOG 0625 multicenter trial. Neuro. Oncol.,
 858 2015. 17(8): p. 1148-1156.
- 859 7. Server, A., et al., Measurements of diagnostic examination performance and correlation
 860 analysis using microvascular leakage, cerebral blood volume, and blood flow derived
 861 from 3T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in
 862 glial tumor grading. Neuroradiology, 2011. 53(6): p. 435-447.
- 863 8. Patel, P., et al., *MR perfusion-weighted imaging in the evaluation of high-grade gliomas*864 *after treatment: a systematic review and meta-analysis.* Neuro-Oncology, 2017. 19(1): p.
 865 118-127.
- 866 9. Cho, H.R., et al., Assessment of bevacizumab resistance increased by expression of
 867 BCAT1 in IDH1 wild-type glioblastoma: application of DSC perfusion MR imaging.
 868 Oncotarget, 2016. 7(43): p. 69606-69615.
- Bell, L.C., et al., Evaluating Multisite rCBV Consistency from DSC-MRI Imaging Protocols
 and Postprocessing Software Across the NCI Quantitative Imaging Network Sites Using a
 Digital Reference Object (DRO). Tomography, 2019. 5(1): p. 110-117.
- Boxerman, J.L., K.M. Schmainda, and R.M. Weisskoff, *Relative cerebral blood volume*maps corrected for contrast agent extravasation significantly correlate with glioma
 tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol, 2006. 27(4): p.
 875 859-67.
- Liu, H.L., et al., *Is Weisskoff model valid for the correction of contrast agent extravasation with combined T1 and T2* effects in dynamic susceptibility contrast MRI?*Med Phys, 2011. **38**(2): p. 802-9.
- Paulson, E.S. and K.M. Schmainda, *Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors.* Radiology, 2008. 249(2): p. 601-13.
- 882 14. Boxerman, J.L., et al., Dynamic Susceptibility Contrast MR Imaging in Glioma: Review of

- *Current Clinical Practice.* Magn. Reson. Imaging Clin. N. Am., 2016. 24(4): p. 649-670.
 Prah, M.A., et al., *Repeatability of Standardized and Normalized Relative CBV in Patients with Newly Diagnosed Glioblastoma.* AJNR Am. J. Neuroradiol., 2015. 36(9): p. 16541661.
- 16. Jafari-Khouzani, K., et al., *Repeatability of Cerebral Perfusion Using Dynamic Susceptibility Contrast MRI in Glioblastoma Patients*. Transl. Oncol., 2015. 8(3): p. 137146.
- Bedekar, D., T. Jensen, and K.M. Schmainda, *Standardization of relative cerebral blood volume (rCBV) image maps for ease of both inter-and intrapatient comparisons.* Magn.
 Reson. Med., 2010. 64(3): p. 907-913.
- 18. Emblem, K.E., et al., *Histogram analysis of MR imaging-derived cerebral blood volume*894 *maps: combined glioma grading and identification of low-grade oligodendroglial*895 *subtypes.* AJNR Am. J. Neuroradiol., 2008. **29**(9): p. 1664-1670.
- Shin, K.E., et al., *DCE and DSC MR perfusion imaging in the differentiation of recurrent tumour from treatment-related changes in patients with glioma*. Clin. Radiol., 2014.
 69(6): p. e264-72.
- 899 20. Grandin, C.B., et al., Absolute CBF and CBV measurements by MRI bolus tracking before
 900 and after acetazolamide challenge: repeatability and comparison with PET in humans.
 901 Neuroimage, 2005. 26(2): p. 525-535.
- 21. Levin, H.S., et al., Serial MRI and neurobehavioural findings after mild to moderate
 23. closed head injury. J. Neurol. Neurosurg. Psychiatry, 1992. 55(4): p. 255-262.
- Wetzel, S.G., et al., *Relative Cerebral Blood Volume Measurements in Intracranial Mass Lesions: Interobserver and Intraobserver Reproducibility Study.* Radiology, 2002. 224(3):
 p. 797-803.
- 907 23. Smits, M., et al., *Repeatability and reproducibility of relative cerebral blood volume*908 *measurement of recurrent glioma in a multicentre trial setting*. Eur. J. Cancer, 2019. 114:
 909 p. 89-96.
- 910 24. Keenan, K.E., et al., Assessing effects of scanner upgrades for clinical studies. J Magn
 911 Reson Imaging, 2019. 50(6): p. 1948-1954.
- 912 25. Quarles, C.C., L.C. Bell, and A.M. Stokes, *Imaging vascular and hemodynamic features of*913 *the brain using dynamic susceptibility contrast and dynamic contrast enhanced MRI.*914 Neuroimage, 2019. **187**: p. 32-55.
- 915 26. Semmineh, N.B., et al., Optimization of Acquisition and Analysis Methods for Clinical
 916 Dynamic Susceptibility Contrast MRI Using a Population-Based Digital Reference Object.
 917 AJNR Am. J. Neuroradiol., 2018. 39(11): p. 1981-1988.
- 918 27. Welker, K., et al., ASFNR recommendations for clinical performance of MR dynamic
 919 susceptibility contrast perfusion imaging of the brain. AJNR Am. J. Neuroradiol., 2015.
 920 36(6): p. E41-51.
- 28. Leu, K., J.L. Boxerman, and B.M. Ellingson, Effects of MRI Protocol Parameters, Preload
 Injection Dose, Fractionation Strategies, and Leakage Correction Algorithms on the
 Fidelity of Dynamic-Susceptibility Contrast MRI Estimates of Relative Cerebral Blood
 Volume in Gliomas. American Journal of Neuroradiology, 2017. 38(3): p. 478-484.
- 925 29. Shellock, F.G. and J.V. Crues, *MR procedures: biologic effects, safety, and patient care.*926 Radiology, 2004. 232(3): p. 635-652.

- 92730.Shellock, F.G. and A. Spinazzi, *MRI safety update 2008: part 1, MRI contrast agents and*928*nephrogenic systemic fibrosis.* AJR Am. J. Roentgenol., 2008. **191**(4): p. 1129-1139.
- Shellock, F.G. and A. Spinazzi, *MRI safety update 2008: part 2, screening patients for MRI.* AJR Am. J. Roentgenol., 2008. **191**(4): p. 1140-1149.
- Shinbane, J.S., P.M. Colletti, and F.G. Shellock, *Magnetic resonance imaging in patients with cardiac pacemakers: era of" MR Conditional" designs.* J. Cardiovasc. Magn. Reson.,
 2011. 13(1): p. 63.
- 33. Ciet, P. and D.E. Litmanovich, *MR safety issues particular to women.* Magn. Reson.
 33. Imaging Clin. N. Am., 2015. 23(1): p. 59-67.
- 936 34. Enders, J., et al., *Reduction of claustrophobia during magnetic resonance imaging:*937 *methods and design of the" CLAUSTRO" randomized controlled trial.* BMC Med. Imaging,
 938 2011. 11(1): p. 4.
- 939 35. Hoxworth, J.M., et al., Performance of Standardized Relative CBV for Quantifying
 940 Regional Histologic Tumor Burden in Recurrent High-Grade Glioma: Comparison against
 941 Normalized Relative CBV Using Image-Localized Stereotactic Biopsies. AJNR Am J
 942 Neuroradiol, 2020. 41(3): p. 408-415.
- 36. Jung, S.C., et al., *Cerebral blood volume analysis in glioblastomas using dynamic*susceptibility contrast-enhanced perfusion MRI: a comparison of manual and
 semiautomatic segmentation methods. PLoS One, 2013. 8(8): p. e69323.
- 946 37. Hu, L.S., et al., Optimized preload leakage-correction methods to improve the diagnostic
 947 accuracy of dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in
 948 posttreatment gliomas. AJNR Am J Neuroradiol, 2010. **31**(1): p. 40-8.
- Bell, L.C., A.M. Stokes, and C.C. Quarles, Analysis of postprocessing steps for residue
 function dependent dynamic susceptibility contrast (DSC)-MRI biomarkers and their
 clinical impact on glioma grading for both 1.5 and 3T. J. Magn. Reson. Imaging, 2019.
- 39. Emblem, K.E., et al., *A generic support vector machine model for preoperative glioma*survival associations. Radiology, 2015. **275**(1): p. 228-234.
- 95440.Korfiatis, P., et al., Dynamic Susceptibility Contrast-MRI Quantification Software Tool:955Development and Evaluation. Tomography, 2016. **2**(4): p. 448-456.
- 956 41. QIBA CT Volumetry Biomarker Committee. *CT Tumor Volume Change for Advanced*957 *Disease (CTV-AD), Quantitative Imaging Biomarkers Alliance. Profile Stage 3: Technically*958 *Confirmed.* 2018 June 22; Available from:
- 959https://qibawiki.rsna.org/images/d/d3/QIBA_CTVol_TumorVolumeChangeProfile_TechC960onfirmed-20180622a.pdf.
- 961 42. Bastin, M.E., Correction of eddy current-induced artefacts in diffusion tensor imaging
 962 using iterative cross-correlation. Magn. Reson. Imaging, 1999. 17(7): p. 1011-1024.
- 96343.Chen, N.-K. and A.M. Wyrwicz, Removal of EPI Nyquist ghost artifacts with two-964dimensional phase correction. Magn. Reson. Med., 2004. **51**(6): p. 1247-1253.
- 965 44. Ellingson, B.M., et al., *Consensus recommendations for a standardized Brain Tumor*966 *Imaging Protocol in clinical trials.* Neuro. Oncol., 2015. **17**(9): p. 1188-1198.
- 967 45. Obuchowski, N.A., et al., *Statistical Issues in Testing Conformance with the Quantitative*968 *Imaging Biomarker Alliance (QIBA) Profile Claims*. Acad. Radiol., 2016. 23(4): p. 496-506.
- 969 46. Benner, T., et al., *Cerebral MR perfusion imaging: first clinical application of a 1 M*
- 970 gadolinium chelate (Gadovist 1.0) in a double-blinded randomized dose-finding study. J.

- 971 Magn. Reson. Imaging, 2000. **12**(3): p. 371-380.
- 972 47. Sullivan, D.C., et al., *Metrology Standards for Quantitative Imaging Biomarkers.*973 Radiology, 2015. **277**(3): p. 813-825.
- 97448.Raunig, D.L., et al., Quantitative imaging biomarkers: a review of statistical methods for975technical performance assessment. Stat. Methods Med. Res., 2015. 24(1): p. 27-67.
- 976
- 977
- 978

979 Appendices

980 Appendix A: Acknowledgements and Attributions

This document is proffered by the Radiological Society of North America [47], Dynamic
Susceptibility Contrast Biomarker Committee. The Biomarker Committee is composed of
scientists, engineers, and clinicians representing academia, the imaging device manufacturers,
image analysis software developers, image analysis laboratories, biopharmaceutical industry,
government research organizations, professional societies, and regulatory agencies, among
others. All work is classified as pre-competitive.

987

988 The following individuals have made critical contributions in the development of this Profile: 989

- 990 991 Daniel Barboriak 1006 John Kirsch 992 Laura Bell 1007 Hendrik Laue 993 Michael Boss 1008 Dariya Malyarenko 994 Jerrold Boxerman 1009 Elizabeth Mirowski 995 Slavka Carnicka 1010 Matthias JP van Osch 996 Thomas Chenevert 1011 Nancy Obuchowski 997 Caroline Chung 1012 Chad Quarles 1013 Luis Rodriguez 998 Benjamin Ellingson 999 Kyrre Emblem 1014 Mark Rosen 1000 Bradley J. Erickson 1015 Kathleen Schmainda 1001 Alexander Guimaraes 1016 Mark Shiroishi 1002 Brandon L. Hancock 1017 Daniel Sullivan 1003 Leland Hu 1018 Ona Wu 1004 Edward Jackson 1019 Gudrun Zahlmann 1005 Katy Keenan 1020 1021 We also acknowledge the extraordinary efforts by RSNA QIBA staff in making this Profile 1022 possible.
- 1022
- 1023
- 1024

1025 Appendix B: Background Information

QIBA Wiki: 1026 http://qibawiki.rsna.org/index.php/Main_Page 1027 1028 1029 QIBA Perfusion, Diffusion, and Flow Biomarker Committee Wiki: 1030 http://qibawiki.rsna.org/index.php/Perfusion,_Diffusion_and_Flow-MRI_Biomarker_Ctte 1031 1032 QIBA DSC Digital Reference Object 1033 https://bit.ly/2QXLo3e 1034 1035 **QIBA DSC Phantom Preparation and Software Manual** http://qibawiki.rsna.org/index.php/Perfusion,_Diffusion_and_Flow-MRI_Biomarker_Ctte 1036

1037 Appendix C: Conventions and Definitions

- 1038 DICOM: Digital Imaging and Communications in Medicine standard for distributing and viewing1039 any kind of medical image regardless of the origin.
- 1041 **Repeatability Coefficient (RC):** Represents measurement precision where conditions of the 1042 measurement procedure (scanner, acquisition parameters, slice locations, image reconstruction, 1043 operator, and analysis) are held constant over a "short interval".
- **Reproducibility Coefficient (RDC):** Similar to RC, the reproducibility coefficient (RDC) may be defined as the least significant difference between two repeated measurements taken under different conditions. According to Raunig et al. [48], the repeated measurements can be taken at different sites but also could be designed to measure reproducibility across different scanners, readers/reviewers, algorithms, or software. It is similar to repeatability in the sense that repeated measurements are made on the same subject; however the measurement of reproducibility includes the sum of both the within-subject and the between-condition variances [48].
- 1052
 1053 Linearity: A requirement of a linear relationship between the measured value and the true value
 1054 over a physiologically-relevant range; the slope of this line should be equal to 1. Ideally, to
 1055 establish linearity with slope equal to 1, five truth values shall be assessed, each with five
 1056 repetitions.
 - 1057

1060 1061

1062

1040

- Within-subject Coefficient of Variance (wCV): Is often reported for repeatability studies to assess
 repeatability in test-retest designs. Calculated as seen in the table below:
 - Steps for Calculating the wCV
 - 1 Calculate the variance and mean for each of N subjects from their replicate measurements.
 - 2 Calculate the wCV² for each of the N subjects by dividing their variance by their mean squared.
 - 3 Take the mean of the wCV^2 over the N subjects.
 - 4 Take the square root of the value in step 3 to get an estimate of the wCV.
- 1063
- 1064

1065 Appendix D: Model-specific Instructions and Parameters

- 1066 For acquisition modalities, reconstruction software and software analysis tools, profile 1067 conformance requires meeting the activity specifications above in Sections 2, 3 and 4.
- 1068 This Appendix provides, as an informative tool, some specific acquisition parameters,
- 1069 reconstruction parameters and analysis software parameters that are expected to be
- 1070 compatible with meeting the profile requirements. Just using these parameters without
- 1071 meeting the requirements specified in the profile is not sufficient to achieve conformance.
- 1072 Conversely, it is possible to use different compatible parameters and still achieve conformance.
- Sites using models listed here are encouraged to consider using these parameters for both
 simplicity and consistency. Sites using models not listed here may be able to devise their own
 settings that result in data meeting the requirements.

1076 IMPORTANT: <u>The presence of a product model/version in these tables does not imply it has</u>

1077 <u>demonstrated conformance with the QIBA Profile.</u> Refer to the QIBA Conformance
 1078 Statement for the product.

1079	Table D.1 Model-specific Parameters for 3T Acquisition Devices				
	Acquisition Device	Settings Compatible with C	onformance		
		Submitted by: Massachuset	tts General Hospital		
		TR	1500 ms (maximum)		
		TE	30 ms		
		FA	60		
		Acceleration	iPAT 2 (no PF)		
	Siemens	Timepoints	At least 120		
		Head coil	32 channel		
		Scan FoV	220-240		
		Acquisition Matrix	128x128		
		Slice Thickness	5 mm		
		Gap	20%		
		Submitted by: Mayo Clinic			
		TR	1500 ms (maximum)		
		TE	30 ms		
		FA	60		
	General Electric	Averages	1		
		Timepoints	At least 115		
		Head coil	32 channel		
		FOV Phase	100%		
		Acquisition Matrix	128x128		
		Slice Thickness	5 mm		

	Phase Encoding Direction Bandwidth FOV Read	A->P 1220 220		
	Submitted by: Barrow Neurological Institute			
Philips	Fast Imaging mode Scan mode Dynamic study TR TE FA Acceleration (SENSE) Halfscan Timepoints Head coil FOV Acquisition Matrix (M x P) Slice Thickness	EPI (single-shot) MS (technique = FFE) individual (dyn scans = 100) 1500 ms (maximum) 30 ms 60 Yes, (P reduction (AP) = 2.29) Yes (factor = 0.73) At least 120 32 channel 220-240 128x128 5 mm		
	Submitted by: Canon Medico	al Systems USA		
Canon	TR TE FA Scan FOV Acceleration Timepoints Head coil Scan FoV Acquisition Matrix Slice Thickness Number of slices Part Fourier	1500 ms 30 ms 60 24 x 24 2 (SPEEDER) At least 120 32 channel 240 128 x 128 5mm skip 1 mm (= 5mm with 1 mm gap) 19 No		

1083 Appendix E: Conformance Checklists

- Within an Actor Checklist the requirements are grouped by the corresponding Activity in the
 QIBA Profile document. If you are unsure about the meaning or intent of a requirement,
 additional details may be available in the Discussion section of the corresponding Activity in the
 Profile.
- 1097 Conforms (Y/N) indicates whether you have performed the requirement and confirmed1098 conformance. When responding N, please explain why.
- 1099 Site Opinion is included during the Technical Confirmation process to allow you to indicate how
- 1100 the requirement relates to your current, preferred practice. When responding **Not Feasible** or
- 1101 Feasible, will not do (i.e. not worth it to achieve the Profile Claim), please explain why.
- Since several of the requirements mandate the use of specific assessment procedures, thoseare also included at the end to minimize the need of referring to the Profile document.
- 1104 Feedback on all aspects of the Profile and associated processes is welcomed.

1105	Site checklist	Page 51
1106	Acquisition Device checklist	Page 52
1107	Contrast Injector checklist	Page 54
1108	Contrast Media checklist	Page 55
1109	Radiologist checklist	Page 56
1110	Physicist checklist	Page 57

- 1111Technologist checklistPage 61
- 1112Image Analyst checklistPage 64
- 1113 Reconstruction Software checklist Page 68
- 1114Image Analysis Tool checklistPage 69
- 1115
- 1116
- 1117

1121

)	Name	of Site	Checked:

Parameter	Conform s (Y/N)	Requirement	Site Opinion			
	Site Conformance (section 3.0)					
Acquisition Devices		Shall confirm all participating acquisition devices conform to this Profile.	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
Contrast Injector		Shall confirm all participating contrast injectors conform to this Profile.	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
Contrast medium		Shall confirm all participating contrast media conform to this Profile.	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
Reconstruc tion Software		Shall confirm all participating reconstruction software conform to this Profile.	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
Image Analysis Tools		Shall confirm all participating image analysis tools conform to this Profile.	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
Radiologist s		Shall confirm all participating radiologists conform to this Profile.	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
Physicists		Shall confirm all participating physicists conform to this Profile.	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
Technologi sts		Shall confirm all participating technologists conform to this Profile.	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
lmage Analyst		Shall confirm all participating analysts conforms to this Profile.	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			

ACQUISITION DEVICE CHECKLIST

1126 Acquisition Device(s) Checked - Make/Model/Version:

Parameter	Conforms (Y/N)	Requirement	Site Opinion			
	Product Validation (section 3.2)					
Field Strength		Shall confirm field strength is 3T	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
Pulse sequence		Shall be capable of acquiring gradient echo data with echo planar imaging	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
MRI Equipment Specifications		Shall meet MRI Equipment Specifications and Performance. See Section 4.1	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
Acquisition		Shall be capable of making validated protocols (designed and validated by the manufacturer and/or by the site) available to the technologist at scan time.	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
Protocol		Shall prepare a protocol conformant with section 3.6.2 "Protocol Design Specification".	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
		Shall record in the DICOM image header the actual values for the tags listed in the DICOM Tag column in sections 3.6.2 "Protocol Design Specification".	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
lmage Header		Shall record actual timing and triggers in the image header by including the Contrast/Bolus Agent Sequence (0018,0012).	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
		Shall support recording in the image header (Image Comments (0020,4000) or Patient Comments (0010,4000)) information entered by the Technologist about the acquisition.	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
Pre-delivery (section 3.3)						
Scanner performance benchmark		Scanner shall meet vendor-established performance benchmark ranges for the given model.	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
Pulse sequence		Shall be qualified by a physicist as capable of acquiring gradient echo data with echo planar	 Routinely do already Feasible, will do 			

	imaging readout within vendor-established performance benchmark ranges	 Feasible, will not do Not feasible 	
	Periodic QA (section 3.5)		
Scanner performance benchmark	Shall meet vendor-established performance benchmark ranges for the given model.	 Routinely do already Feasible, will do Feasible, will not do Not feasible 	

CONTRAST INJECTOR CHECKLIST

Contrast Injector(s) Checked - Make/Model/Version:

Parameter	Conforms (Y/N)	Requirement	Site Opinion	
		Product Validation (section 3.2)		
Image Data Acquisition		Shall be capable of performing power injection with all the parameters set as specified in section 3.9 "Image Data Acquisition"	 Routinely do already Feasible, will do Feasible, will not do Not feasible 	
		Pre-delivery (section 3.3)		
Injector performance benchmark		Injector shall meet vendor-established performance benchmark ranges for the given model and capable of injection rates as specified in section 3.9 "Image Data Acquisition"	 Routinely do already Feasible, will do Feasible, will not do Not feasible 	
Periodic QA (section 3.5)				
Contrast Injector Performance Benchmark		Shall meet vendor-established performance benchmark ranges for the given model.	 Routinely do already Feasible, will do Feasible, will not do Not feasible 	

1137	CONTRAST MEDIA CHECKLIST				
1138 1139 1140	Contrast Media/Agent Checked – Brand:				
	Parameter	Conforms (Y/N)	Requirement	Site Opinion	
	Product Validation (section 3.2)				
	Image Data Acquisition		Shall confirm gadolinium based contrast agent (GBCA) used for study conforms with local and FDA safety guidelines.	 Routinely do already Feasible, will do Feasible, will not do Not feasible 	

1144

1145

RADIOLOGIST CHECKLIST

Note: The Radiologist is responsible for the protocol parameters, although they may choose to use a

1147 protocol provided by the vendor of the acquisition device. The Radiologist is also responsible for

ensuring that the protocol has been validated, although the Physicist actor is responsible for performing

the validation. Protocol design should be done collaboratively between the physicist and the radiologist

with the ultimate responsibility to the radiologist. Some parameters are system dependent and mayrequire special attention from a physicist.

1152

1153 Radiologist(s) Checked:

1154

Parameter	Conforms (Y/N)	Specification	Site Opinion		
		Staff Qualification (section 3.1)			
Qualification		Shall be a qualified individual with experience in clinical DSC acquisition and interpretation	 Routinely do already Feasible, will do Feasible, will not do Not feasible 		
		Protocol Design (section 3.6)			
Acquisition Protocol		Shall approve protocol developed by the Physicist to meet the requirements of this profile.	 Routinely do already Feasible, will do Feasible, will not do Not feasible 		
		Shall ensure technologists have been trained on the requirements of this profile.	 Routinely do already Feasible, will do Feasible, will not do Not feasible 		
Image Interpretation (section 3.14)					
AUC-TN Change		Shall confirm all steps were performed to interpret if there is a valid change consistent with the reproducibility coefficient within the enhancing tumor or normal brain tissue	 Routinely do already Feasible, will do Feasible, will not do Not feasible 		

1156

PHYSICIST CHECKLIST

- 1157
- **Note:** The role of the Physicist actor may be played by an in-house medical physicist, a physics
- 1159 consultant or other staff (such as vendor service or specialists or technologists) qualified to perform the
- 1160 validations described.
- 1161

1162 Physicist(s) Checked:

Parameter	Conforms (Y/N)	Requirement	Site Opinion
		Staff Qualification (section 3.1)	
Qualification		Shall be a qualified individual with experience in establishing protocols on the MRI system and performing quality assurance checks on the MRI equipment.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
	I <u></u>	Pre-delivery (section 3.3)	11
Scanner performance benchmark		Shall qualify that device meets vendor-established performance benchmark ranges for the given model	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Pulse sequence		Shall qualify device as capable of acquiring gradient echo data with single shot echo planar imaging (EPI) readout within vendor-established performance benchmark ranges	 Routinely do already Feasible, will do Feasible, will not do Not feasible
		Periodic QA (section 3.5)	
		Shall assess scanner performance metrics are within vendor-established performance benchmark ranges for the given model.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Scanner performance benchmark		Shall document all hardware/software upgrades.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
	Shall record the date/time of calibrations as recommended by the vendor.	Shall record the date/time of calibrations as recommended by the vendor.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Scanner		Shall perform periodic system QA using QIBA-NIST DSC phantom (see Appendix F). See Section 4.3. Assessment Procedure: Scanner Stability.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Stability		Shall confirm correlation coefficient measurements between $\Delta R2^*$ values in the QIBA-NIST DSC phantom measured with echo-planar imaging vs	 Routinely do already Feasible, will do Feasible, will not do Not feasible

		multi-echo gradient echo acquisition is within 98.4 to 99.3% for both inner and outer vials (See Appendix F.2)	
		Shall confirm correlation coefficient measurements between $\Delta R2^*$ values in the QIBA-NIST DSC phantom measured with echo-planar imaging across multiple time points is at least 95% for both inner and outer vials. (see Appendix F.2)	 Routinely do already Feasible, will do Feasible, will not do Not feasible
		Protocol Design (section 3.6)	
		Shall build a protocol that has been previously prepared in consultation with the Radiologist and validated for this purpose.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
	i	Shall confirm protocol is capable of covering area of interest, since most sequences cannot cover the entire brain and achieve sufficient temporal resolution to be clinically useful.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Acquisition Protocol	1	Shall clearly label and store protocol on MRI system for recall in repeat serial scans of patients.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
		Shall track edits to the protocol with version control and archive prior versions	 Routinely do already Feasible, will do Feasible, will not do Not feasible
	1	Shall report if any parameters are modified beyond the specifications.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Imaging Sequence		Shall confirm imaging sequence is a Gradient Echo acquisition with Echo Planar Imaging Readout	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Total Acquisition Time		Shall confirm series acquisition duration is at least 120s	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Bolus Quality		Shall confirm that the protocol achieves a bolus signal drop at least 10% from baseline when using specified contrast agent and dosage. (See Section 4.4)	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Pixel Spacing		Shall confirm that the protocol achieves an in-plane resolution between 1.72 and 1.9 mm ²	 Routinely do already Feasible, will do Feasible, will not do Not feasible

Repetition Time (TR)	Shall confirm Maximum TR = 1500ms	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Acquisition Matrix	Shall confirm Acquisition Matrix achieves required pixel spacing	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Flip Angle	Shall confirm Flip Angle (60)*	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Field Strength	Shall confirm Field Strength is 3T	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Slice Thickness	Shall confirm Slice Thickness (<= 5mm)	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Echo time (TE)	Shall confirm Echo Time (TE)=25-35 ms	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Number of excitations	Shall confirm Number of excitations: 1	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Interslice Gap	Shall confirm Interslice gap (max 1mm) (slice thickness – position of adjacent slice)	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Field-of-view (FOV)	Shall select Reconstruction Diameter to cover brain	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Acquisition Plane	Shall confirm Axial or oblique plane of acquisition	 Routinely do already Feasible, will do Feasible, will not do Not feasible

*Flip Angle may differ depending on dose. See Discussion Section 3.6.1.

TECHNOLOGIST CHECKLIST

1170 Technologist(s) Checked:

Parameter	Conforms (Y/N)	Specification	Site Opinion
		Staff Qualification (section 3.1)	
Qualification		Shall be a qualified individual with experience in clinical DSC acquisition, including use of power injector and administration of contrast material and familiar with good clinical practice	 Routinely do already Feasible, will do Feasible, will not do Not feasible
		Periodic QA (section 3.5)	1
		Shall assess injector performance are within vendor-established performance benchmark ranges for the given model	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Contrast Injector		Shall document all hardware/software upgrades.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
		Shall record the date/time of calibrations for calibrations as recommended by the vendor.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
		Subject Handling (section 3.8)	
Subject Positioning		Shall position the subject consistent with baseline. If baseline positioning is unknown, position the subject Supine if possible, with devices such as positioning wedges placed.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Use of intravenous contrast		Shall use the prescribed intravenous contrast medium parameters.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
		Shall use the same injection site and catheter size used for baseline study (if applicable)	 Routinely do already Feasible, will do Feasible, will not do Not feasible
		Shall use the same total volume of contrast medium administered, the concentration, the injection rate, and volume of saline flush used for baseline study (if applicable)	 Routinely do already Feasible, will do Feasible, will not do Not feasible
		Shall document the total volume of contrast medium administered, the concentration, the	 Routinely do already Feasible, will do

	injection rate, and volume of saline flush used.	Feasible, will not doNot feasible
Artifact Sources	Shall remove or position potential sources of artifacts (including EEG leads and other metal equipment) such that they will not degrade the MRI.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
	Image Data Acquisition (section 3.9)	
	Shall select a protocol that has been previously prepared and validated for this purpose (See section 3.6.2 "Protocol Design Specification").	 Routinely do already Feasible, will do Feasible, will not do Not feasible
	For longitudinal studies, shall confirm patient is scanned on the same scanner as previous studies using the same parameter settings.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Acquisition Protocol	Shall collect suitable localizer (scout) images at the start of exam to confirm proper coil placement and selection of appropriate region to image.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
	Shall report if any parameters are modified beyond the specifications in section 3.6.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
	Shall confirm for the specified TR, that the acquisition protocol covers as much of the tumor as possible. It is critical to not increase the TR to include more slices.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Image Header	Shall enter on the console any factors that adversely influenced subject positioning or limited their ability to cooperate (e.g., remaining motionless, agitation in subjects with decreased levels of consciousness, subjects with chronic pain syndromes, etc.).Image Comments (0020,4000) or Patient Comments (0010,4000	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Scan Plane (Image Orientation)	Shall set consistent with baseline (if applicable). Image Orientation Patient (0020,0037)	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Acquisition Field of View (FOV)	Shall set consistent with baseline (if applicable). Reconstruction Diameter (0018, 1100)	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Number of	Shall set consistent with baseline (if applicable).	Routinely do already

Slices	Otherwise, shall confirm number of slice locations provides coverage of tumor.	 Feasible, will do Feasible, will not do Not feasible
Use of intravenous contrast injection delay	Shall wait pre-specified number of phases (at least 60s) before bolus injection	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Contrast injection rate	Shall set contrast injection rate on power injector to be 4 to 5 cc/sec unless clinical circumstances require a different rate.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Use of intravenous contrast flush	Shall inject at least 20cc of saline immediately after the contrast medium bolus through the same line and venous access point	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Image data reconstruction	Shall post-process images either in-line if the acquisition device has available image analysis or transfer images to an off-line analysis workstation.	 Routinely do already Feasible, will do Feasible, will not do Not feasible

1174

1175

IMAGE ANALYST CHECKLIST

Parameter	Conforms (Y/N)	Specification	Site Opinion
		Staff Qualification (section 3.1)	
Qualification		Shall be an individual trained in (1) understanding of key DSC acquisition principles of perfusion-weighted imaging and test procedures to confirm that related DICOM metadata content is maintained along the network chain from Scanner to PACS and analysis workstation, (2) assessing quality of acquired images, (3) placement of regions of interest in appropriate anatomical locations and (4) use of Reconstruction Software and Image Analysis Tools.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
	1	Periodic QA (section 3.5)	1
Reconstruction Software Upgrades		Shall document version and time of all software upgrades and shall confirm performance within benchmark on digital reference objects	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Image Analysis Tool		Shall document all software upgrades	 Routinely do already Feasible, will do Feasible, will not do Not feasible
	1	Image Data Reconstruction (section 3.10)	
Pre-Bolus Baseline		Shall visually identify and document pre-bolus baseline. See Section 4.4. Assessment Procedure: Pre-bolus baseline	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Post-Bolus Time-point		Shall visually identify and document post-bolus baseline. See Section 4.5. Assessment Procedure: Post-bolus Time-point	 Routinely do already Feasible, will do Feasible, will not do Not feasible
AUC and K2 maps calculation		Shall use the same procedural steps for image reconstruction of AUC-TN and K2 map generation for all subjects and time points. See Section 4.6. Assessment Procedure: AUC-TN and K2 maps calculation.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Normalization		Shall visually select an ROI to be used to normalize AUC values to create AUC-TN maps. Created AUC-TN and ROI shall be saved. See Section 4.7. Assessment Procedure: Normalization.	 Routinely do already Feasible, will do Feasible, will not do Not feasible

AUC-TN and K2 maps	Shall use the same software to calculate AUC-TN and K2 maps	 Routinely do already Feasible, will do Feasible, will not do Not feasible
	Image QA (section 3.11	
Tumor Size	Shall confirm that tumor longest in-plane diameter is between 10 mm and 100 mm. (For a spherical tumor this would roughly correspond to a volume between 0.5 cm ³ and 524 cm ³ .)	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Tumor Margin Conspicuity	Shall confirm the tumor margins are sufficiently conspicuous to place ROIs.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Patient Motion Artifacts	Shall confirm the images containing the tumor are free from artifact due to patient motion that are not correctable with motion correcting algorithms. See Section 4.8. Assessment Procedure: Patient Motion	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Bolus Profile	Shall confirm that the bolus profile can be detected in individual voxels compared to signal fluctuation. See Section 4.9. Assessment Procedure: Bolus Profile	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Susceptibility Artifacts	Shall confirm the images containing the tumor are free from artifact due to paramagnetic objects, materials or anatomic positioning. See Section 4.10. Assessment Procedure: Susceptibility Artifacts.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Ghost/parallel imaging artifacts	Shall confirm tissue of interest is not obscured by discrete ghosts from extraneous signal sources along phase-encode direction	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Severe spatial distorion	Shall confirm tissue of interest are free from severe spatial distortion due to poor magnet homogeneity	 Routinely do already Feasible, will do Feasible, will not do Not feasible
AUC-TN Measurability	Shall disqualify any tumor that might reasonably degrade the consistency and accuracy of AUC- TN measurement. Conversely, if artifacts are present but the analyst is confident and prepared to edit the ROIs to eliminate the impact, then the tumor might be judged conformant to the Profile.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
CONSISTENCY	Shah commu that the image processing is	L Nouthery to alleady

with Baseline	similar to baseline in terms of processing parameters.	 Feasible, will do Feasible, will not do Not feasible 			
	Shall reprocess the images if baseline image was processed by a different Image Analysis Tool or Analyst.	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
	Image Distribution (section 3.12)				
DICOM Data	Shall archive raw source DSC-MRI data and any secondary DICOM series used for analysis to be available for verification and validation	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
AUC-TN and K2	Shall archive all calculated AUC-TN (and K2) maps as well as all parameters used for the computation (e.g. number of baseline points, integration duration, etc)	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
Regions of Interest (ROI)	Shall save all ROIs used for analysis or statistics. See Section 3.10.1 for a discussion of how to place and impact on performance	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
Registration	Shall save all parameters used for time-series image registration and registration to anatomical images (if applicable)	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
Interpretation Result	Shall save all interpretation of results made by Radiologist for purposes of verification and audit	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
	Image Analysis (section 3.13)				
	Shall segment the region of interest (ROI) measured in enhancing brain tumor tissue as identified on the pre-contrast versus post- contrast T1-weighted images and placed by the same analyst as the baseline scan (if applicable)	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
ROI Determination	Shall segment an ROI volume that is at least a 1cm ² area	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
	Shall use the same software to place ROIs and measure ROI values	 Routinely do already Feasible, will do Feasible, will not do Not feasible 			
Image Registration	Shall align the AUC-TN image to the T1 post- contrast image and save transformation parameters.	 Routinely do already Feasible, will do Feasible, will not do 			

			Not feasible
	Shall measure the mean of AUC-TN values in the		Routinely do already
Moanvaluo		Feasible, will do	
		ROI in the tissue of interest	Feasible, will not do
			Not feasible
Results Recording	Shall measure ROI metrics based on manually or	Routinely do already	
		Feasible, will do	
		automatically delineated ROIs and record	Feasible, will not do
	results as specified in Section 3.2	Not feasible	

RECONSTRUCTION SOFTWARE CHECKLIST

Reconstruction Software Checked - Make/Model/Version:

Parameter	Conforms (Y/N)	Requirement	Site Opinion
		Product Validation (section 3.2)	
Reading		Shall be able to present the reader with both timepoints side-by-side for comparison when processing the second timepoint.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Paradigm		Shall re-process the first time point if it was processed by a different Reconstruction Software or Analyst.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
Digital Reference Object		Shall demonstrate linear performance and has expected wCV on digital reference objects. See Section 4.2. Assessment Procedure: Digital Reference Object.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
		Shall record the image analysis tool version.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
AUC-TN and K2 maps		Shall record AUC-TN and K2 images	 Routinely do already Feasible, will do Feasible, will not do Not feasible
		Shall record parameters used for calculation of AUC- TN	 Routinely do already Feasible, will do Feasible, will not do Not feasible
		Image Data Reconstruction (section 3.10)	
AUC-TN and K2 maps calculation		Shall be able to calculate and save AUC-TN and K2 maps with either manual input data from the Image Analyst or automated calculation of above parameters. See Section 3.2.	 Routinely do already Feasible, will do Feasible, will not do Not feasible

IMAGE ANALYSIS TOOL CHECKLIST

Image Analysis Tool(s) Checked - Make/Model/Version:

Parameter	Conforms (Y/N)	Requirement	Site Opinion
		Product Validation (section 3.2)	
Multiple Tumors		Shall allow multiple tumors to be measured.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
		Shall either correlate each measured tumor across time points or support the analyst to unambiguously correlate them.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
ROI Result Recording		Shall record the image analysis tool version.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
		Shall record percentage AUC-TN change relative to baseline for each tumor.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
		Shall record ROIs used.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
		Shall record volume of regions of interests used.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
		Shall record the confidence interval of result for each AUC-TN change measurement.	 Routinely do already Feasible, will do Feasible, will not do Not feasible
	1	Image Analysis (section 3.13)	
Results Recording		Shall measure ROI metrics based on manually or automatically delineated ROIs and record results as specified in Section 3.2	 Routinely do already Feasible, will do Feasible, will not do Not feasible

1190 Appendix F: Technical System Performance Evaluation using DSC Phantom

Procedures below are for basic assessment of MRI equipment in conformance to the quantitative DSC Profile. Conformance limits for performance metrics are suggested to ensure that technical measurement errors related to the MRI system do not unduly contribute to measurement variance.

1195 **F.1. ASSESSMENT PROCEDURE: ΔR2* QUALITIES AT/NEAR ISOCENTER**

1196 This activity describes criteria that are necessary for an MRI system to meet the quantitative 1197 DSC Profile Claims for evaluating DSC Phantom data.

1198 <u>F.1.1 Discussion</u>

1199 To assess an MRI system for AUC-TN measurement bias and precision, a phantom containing 1200 media having known susceptibility properties is required. The phantom should be filled with 1201 distilled water for at least 24 hours before expected scan date to allow air bubbles to settle. The 1202 assessor must transfer the phantom carefully to the scanner to avoid creation of air bubbles, 1203 ideally allowing sufficient time for the sample to achieve thermal equilibrium (>1 hour). Details 1204 for preparation and use of the QIBA DSC phantom are available in the QIBA DSC wiki, "DSC 1205 Phantom User Manual". This assessment procedure requires the assessor use the DSC-MRI scan 1206 parameters in Table F1 for the gradient echo (GRE) EPI acquisition and scan parameters in Table 1207 F2 for the Multi-Echo GRE acquisition.

1208 1209

1210

Table F.1 Model-specific Parameters for DSC Gradient Echo Acquisition with Echo Planar Imaging readout

Acquisition Device	Settings Compatible with Conformance		
	TR	1500 ms	
	TE	30 ms	
	FA	60	
	Acceleration	2 (GRAPPA)	
	Timepoints	120	
Siemens	Head coil	32 channel	
	Scan FoV	240	
	Acquisition Matrix	128x128	
	Slice Thickness	5 mm skip 1 mm	
	Number of Slices	11	
	Part Fourier	No	
	TR	1500 ms	
Philips	TE	30 ms	
	FA	60	

	Acceleration	2 (SENSE)
	Timepoints	120
	Head coil	32 channel
	Scan FoV	240
	Acquisition Matrix	128x128
	Slice Thickness	5 mm
	Number of Slices	11
	Part Fourier	Yes (factor = 0.73)
	TR	1500 ms
	TE	30 ms
	FA	60
	Acceleration	2 (ASSET)
	Timepoints	120
General Electric	Head coil	32 channel
	Scan FoV	240
	Acquisition Matrix	128x128
	Slice Thickness	5 mm skip 1 mm
	Number of Slices	11
	Part Fourier	No
	TR	1500 ms
	TE	30 ms
	FA	60
	Acceleration	2 (SPEEDER)
	Timepoints	120
Canon*	Head coil	32 channel
	Scan FoV	240
	Acquisition Matrix	128x128
	Slice Thickness	5 mm skip 1 mm
	Number of Slices	11
	Part Fourier	No

*Not included as part of round-robin tests of phantom used to establish limits in Section F.2.

Table F.2 Model-specific Parameters for Multi-Echo GRE Sequence

Acquisition Device	Settings Compatible with Conformance	
Siemens	TR	750 ms
	TE	4/12/20/28/36/44/52/60 ms
	FA	60
	Head coil	32 channel

	Scan FoV	240	
	Acquisition Matrix	128x128	
	Slice Thickness	5 mm skip 1 mm	
	Number of Slices	11	
	TR	1500 ms	
	TE	4.36/12.036/19.712/27.388/35.064/42.74/50.416/58.092 ms	
	FA	60	
Dhiling	Head coil	32 channel	
Philips	Scan FoV	240	
	Acquisition Matrix	128x128	
	Slice Thickness	5 mm skip 1 mm	
	Number of Slices	11	
	TR	700 ms	
	ТЕ	4.332/11.732/19.132/26.532/33.932/41.332/48.732/56.132 ms	
	FA	60	
Conoral	Head coil	32 channel	
General	Scan FoV	240	
Electric	Acquisition Matrix	128x128	
	Slice Thickness	5 mm skip 1 mm	
	Number of Slices	11	
	Part Fourier	Only if necessary to achieve TE requirements	
Canon	TR	750	
	TE	4.6/12.6/20.6/28.6/36.6/44.6/52.6/60.6 ms	
	FA	60	
	Head coil	32 channel	
	Scan FoV	240	
	Acquisition Matrix	128x128	
	Slice Thickness	5 mm skip 1mm	
	Number of Slices	10	

*Not included as part of round-robin tests of phantom used to establish limits in Section F.2.

1215

The QIBA-NIST DSC phantom is centered at magnet isocenter, the point where the imaging 1216 gradients have no effect on the magnetic field strength. The acquisitions should be performed 1217 with the middle of the gadolinium filled vials (see Appendix G) aligned along the nasion in the 1218

- 1219 following order: localizer, DSC EPI, multi-echo GRE acquisitions. The phantom should then be
- 1220 taken out, rotated and localizer, DSC EPI, multi-echo GRE acquired again but new vial aligned
- along nasion. The phantom should then be rotated one last time and MRI sequences collected in
- 1222 this new rotation.
- 1223

Software for analyzing the collected data is available on the QIBA DSC Wiki page and directions for use provided in the QIBA DSC wiki, "DSC Phantom User Manual". For analyses, typically 5 mm radius region-of-interests measured at 3 midplane slices are utilized as described in the software manual. ROI placement is semi-automated.

1228 F.2 Specification

- 1229 The system is performing to specifications if the following hold true:
- 1230 F.2.1. The 95% confidence interval for the correlation between∆R2* values in the QIBA-NIST DSC
- 1231 phantom measured with echo-planar imaging vs multi-echo gradient echo acquisition is 98.4 to
- 1232 99.3% for both inner and outer vials.
- F.2.2. The 95% confidence interval for the correlation between∆R2* values in the QIBA-NIST DSC
 phantom measured with echo-planar imaging across multiple time points is 95% or higher for
 both inner and outer vials.
- 1236 <u>F.2.3. Discussion</u>

1237 The 95% confidence intervals in Section F.2 are based on round-robin testing of the phantom

- across 6 sites involving 3-vendors (General Electric, Siemens, Philips). The phantom was scanned
- 1239 twice, one day apart using the protocols described in Section F.1 and steps detailed in the QIBA
- 1240 DSC wiki, "DSC Phantom User Manual".

Appendix G: Recipe for making phantom components for Delta Susceptibility Contrast (DSC) MRI Phantom

1244 **G.1. OVERVIEW**

1245

The final configuration of the delta/dynamic susceptibility contrast phantom (DSC-MRI phantom) 1246 utilizes the same form factor as the DWI phantom shell (HPD) and consists of 13 vials. Ten of 1247 which are comprised of 0.01 mM GdCl₃, 0.02 mM EDTA and Agarose of different concentrations 1248 1249 (Figure G1). Every two of those ten vials contain the same sample. The remaining three samples 1250 are reference vials consisting of 0.047 MnCl₂ to mimic the magnetic properties of blood without 1251 contrast agent. In the phantom shell, the vials are arranged in two rings. The inner and outer ring are both composed of six vials, five of which are filled with agarose concentrations ranging from 1252 1253 0.2% to 3% and a reference vial containing 0.047 mM MnCl2. The central vial is also filled with 1254 0.047 mM MnCl₂. There are also three small reference tubes (blue arrows) filled with 1 mM GdCl₃ 1255 solution.

1256

Figure G1: The open DSC-MRI phantom shell and vial layout (on left). Location of vials inphantom and corresponding concentration of agarose and GdCl₃ for each vial (on right).

Vial	Sample (% agarose)
1, 2, 3	0.047 mM MnCl ₂
4, 5	0.2% Agarose + 0.01 mM GdCl ₃
6, 7	0.5% Agarose + 0.01 mM GdCl ₃
8, 9	1.0% Agarose + 0.01 mM $GdCl_3$
10, 11	2.0% Agarose + 0.01 mM $GdCl_3$
12, 13	3.0% Agarose + 0.01 mM GdCl ₃
E 0.5	
-------	--

1260 1261

1263

1264

1265

1262 G.2. MATERIALS

- A microwave safe beaker or flask
- Microwave oven
- Agarose (A9539 SIGMA, BioReagent, for molecular biology)
- 1266 We used: <u>https://www.sigmaaldrich.com/catalog/product/sigma/a9539?lang=en®ion=US</u>
- Gadolinium(III) chloride hexahydrate (G7532 ALDRICH, GdCl₃)
- 1268 We used: <u>https://www.sigmaaldrich.com/catalog/product/aldrich/g7532?lang=en®ion=USA</u>
- 1269 Ethylenediaminetetraacetic acid (431788 ALDRICH, EDTA)
- 1270 We used: <u>https://www.sigmaaldrich.com/catalog/product/aldrich/431788?lang=en®ion=US</u>

1271	•	Manganese (II) chloride tetrahydrate (203734 SIGMA-ALDRICH, MnCl2)
1272		We used:
1273		https://www.sigmaaldrich.com/catalog/product/sigald/203734?lang=en®ion=US
1274	•	Precision balance
1275	•	Thermometer
1276		We used https://www.thermoworks.com/Reference-Thermapen
1277	•	Plastic Wrap
1278	•	Thick gloves or potholders
1279	•	HPD vials, or any other vials used in the phantom
1280		Vials we used: <u>https://www.amazon.com/Azlon-301705-0001-Plastic-Narrow-</u>
1281		Sample/dp/B0046A8YTY?ie=UTF8&redirect=true&ref =s9 simh gw p328 d11 i1
1282		

- 1283 G.3. GEL PREPARATION
- 1284
- 1285 *G.3.1. Preparing chelated GdCl*₃ *master solution* 1286
- 1287 For 100 ml of 1 mM of GdCl₃ chelated with 2 mM of EDTA*
- 1288
- 1289

	Master solution	GdCl₃	EDTA					
	MW (g/mol)	371.7	292.24					
	Volume (L)	0.1	0.1					
	Molarity mol/l	0.001	0.002					
		0.001	0.002					
1200	8	0.03717	0.030440					
1290								
1291	For 2 HPD vials (70 ml of the gel)							
	Percentage of the	egel Ag	arose (g)	GdCl₃ master +EDTA (ml)				
	0.20%	0 0	0.14	0.7				
	0.50%		0.35	0.7				
	1%		0.7	0.7				
	2%		1.4	0.7				
	3%		2.1	0.7				
1293								
1294	The last 3 samples (90 ml in total) contain 0.047 mM MnCl ₂ as a reference solution, comprised of							
1295	0.008371593 g of MnCl ₂ in diH ₂ O							
1296								
1297	G.3.2. Melting aga	irose using	a Microw	ave Oven				
1298								
1299	1. Use a beaker	or flask th	at is 2-4x th	he volume you are making.	. Add 0.7 ml of GdGl₃ master			
1300	solution and fill with diH ₂ O to approximately 50 ml.							
1301	NOTE: Volume of 2 vials is 60 ml. To make sure one has enough gel to avoid forming							
1302	bubbles while fi	lling one r	eeds to pr	epare 70 ml of the gel for	2 vials.			
1303								
1304	2. Weigh out the	2. Weigh out the agarose and add it to the flask. Fill to 70 ml with degassed diH ₂ O.						
1305								
1306	3. To hydrate, swirl the beaker and suspend the agarose in solution. Alternatively, you can							
1307	use a stir bar and	d stirring p	late to rap	idly mix the solution. Reme	ember to remove the stir bar			
1308	before microway	/ing: waaa budw		ha ay tuya hafaya ayaaaadiy	a this allows for a suicker			
1309	a. Let the aga	rose nyura	ate a minui	te or two before proceedin	ig, this allows for a quicker			
1211	than lower no	iu can reu		ig. Let nigher percentage g	eis (>1.5%) fiyurate longer			
1212	than lower pe	ercentage (geis.					
1212	1. Cover the mo	uth of the	haakar wit	h plastic wrap and make a	small hole in the top to allow			
1313	4. Cover the mouth of the beaker with plastic wrap and make a small note in the top to allow the solution to yont							
1314		ciit.						
1315	5 Weigh the hea	aker and re	ecord the s	tarting weight				
1317								
1318	6. Heat the beak	er in the n	nicrowave	for 15-30 second intervals	until the solution begins to			
1319	boil. Stir after each heating interval.							
1320			,					
1321	7. Remove the b	eaker fron	n the micro	owave and very gently swir	1.			

1322WARNING: THE MICROWAVED SOLUTION CAN BECOME SUPERHEATED AND FOAM OVER1323QUICKLY WHEN AGITATED. USE CAUTION AND ALWAYS WEAR APPROPRIATE PROTECTION.

- 8. If solid agarose or gel pieces remain, return the flask to the microwave and continue
 heating in 15 second intervals until all product is in solution. This may take a few minutes
 depending on the strength of your microwave and the gel concentration you are making.
- 9. Once the gel is fully melted (at around 95 °C), reweigh the solution and add diH₂0 to the
 beaker to reach the starting weight. Mix thoroughly.
- 10. Let the solution sit for several minutes to provide time for the bubbles to go out of it.
 Then mix deliberately, but carefully, while swirling along the sides and bottom of the beaker.
 Once there are no bubbles present in the solution, you may pour the gel into the HPD vials.
 NOTE: The heating intervals depend on the volume of gel heated. Adjust accordingly.
- 1337 11. Rinse the vials with IPA (isopropyl alcohol) prior to filling and let them dry to ensure that 1338 the inner surface is clean. The gel will stick to it better. Fill up ¾ of the vials first, then shake 1339 out bubbles that formed while pouring. When filling the last ¼ of vial, tilt it to avoid bubbles 1340 that get stuck on the upper edge. You can intentionally leave one big bubble on the edge and 1341 spin it around the upper edges to gather all small bubbles confined there. Then, you can then easily shake the big bubble out. Fill the rest of the vials to the very top leaving a convex 1342 meniscus on the top of it. Pour some of the gel into vial caps also. Once the gel cools down 1343 1344 and gets stiffer, close the vials.
- 1345
- 1346

1324

1328

1331

1336

- 1347
- 1348