

QIBA Volumetric Study 3A

	Maria Athelogou, PhD	Definiens
	Rick Avila, MS	Kitware, Inc.
	Hubert Beaumont, PhD	MEDIAN Technologies
	Andrew Buckler, MS	Buckler Biomedical Sciences LLC
	Paul Carson, PhD	University of Michigan Health System
	Dirk Colditz, PhD	Definiens
	Alden A. Dima, MS	NIST
	Charles Fenimore, PhD	NIST
	David Gustafson, PhD	INTIO, Inc.
	Hyun Grace Kim, PhD	University of California, Los Angeles
	Nicholas Petrick, PhD	FDA
	Anthony P. Reeves, PhD	Cornell University
	Patrick Reynolds, MS	Kitware, Inc.
	Daniel C. Sullivan, MD	Duke University, RSNA Science Advisor
ater	Ying Tang, PhD	CCS Associates, Inc.
	Binsheng Zhao, DSc	Columbia University Medical Center

Software and Systems Division

BACKGROUND

Software and Systems Division

NIST

- National Institute of Standards and Technology
- Founded in 1901
- Non-regulatory federal agency within the U.S. Department of Commerce
- Mission
 - To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life

QIBA

- Quantitative Imaging Biomarkers Alliance
- Organized by the Radiological Society of North America (RSNA) in 2007
- Unites researchers, healthcare professionals, and industry
- Promotes:
 - Advancement of Quantitative Imaging
 - Use of biomarkers in clinical trials and practice

QIBA Mission

- Improve value and practicality of quantitative imaging biomarkers
- Reduce variability across
 - Devices
 - Patients
 - Time
- "Measuring devices" rather than "Imaging devices"

Software and Systems Division

QIBA Process

- . Identify Error and Variation Sources in Quantitative Results from Imaging Methods
- 2. Specify Potential Solutions and Document as QIBA Profiles
- 3. Test Solutions
 - Vendors and Researchers Implement and Assess
- 4. Promulgate Solutions
 - Disseminated and Implemented via
 - Vendor Adoption
 - Research Integration
 - Clinical Education

Software and Systems Division

QIBA Profiles

- Document specific performance claims and how stakeholders can achieve them
- Stakeholders
 - Users
 - Vendors
- Consist of
 - Claims
 - (Users) What can be accomplished by following Profile
 - Details
 - (Vendors) What must be implemented in products
 - (Users) What procedures are necessary

Snippet from a QIBA Profile

QIBA Profile. Computed Tomography: Change Measurements in the Volumes of Solid Tumors Version 2.0 28 July 2011

SPECIFICATION

Parameter	Specification	
Common Lesion Selection	The Image Analysis Tool shall allow a common set of lesions to be designated for measurement, which are then subsequently measured by all readers.	
Lesion Volume Change	The Image Analysis Tool shall measure lesion volume change (according to Figure 1) with variability less than +/- 15%.	
Multiple Lesions The Image Analysis Tool shall allow multiple lesions to be measured, and elesion to be associated with a human-readable identifier that can be used across time points.		
Recording	The Image Analysis Tool shall record actual model-specific Analysis Software set-up and configuration parameters utilized to achieve compliance with these metrics shall be recorded.Image Analysis Tools shall record in (and reload for review from) region specification (e.g., lesion segmentation boundary) and volumetric measurement as well as metadata in standard formats including one or more of the following output formats: DICOM Presentation State, DICOM Structured Report; DICOM RT Structure Set; DICOM raster or surface segmentation.	

Some QIBA VolCT Groups/Studies

- Group 1A
 - Measure intra/inter-reader variability for lung nodule volume measurements
- Group 1B
 - Measure minimum detectable change in patient datasets under a "No Change" condition?
- Group 1C
 - Model Sources of variability from a systems engineering analysis
- Group 3A
 - Characterize variability due to algorithm using phantoms and clinical data
- Group 3B
 - Characterize clinical utility/efficacy with respect to clinical endpoints
- Colorado Group
 - Characterize clinical utility/efficacy with respect to clinical endpoints

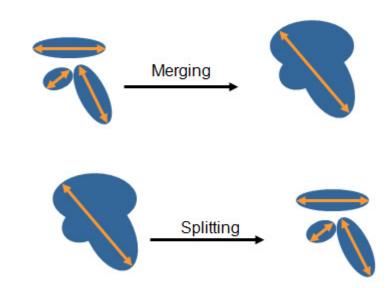
IMAGING BIOMARKERS

Imaging Biomarkers

- Imaging Biomarkers
 - Anatomic, physiologic, biochemical, or molecular parameters detectable with imaging methods used to establish the presence or severity of disease
 - John J. Smith, MD, JD, A. Gregory Sorensen, MD and James H. Thrall, MD, Biomarkers in Imaging: Realizing Radiology's Future, June 2003 Radiology, 227, 633-638.

Imaging Biomarker Uses

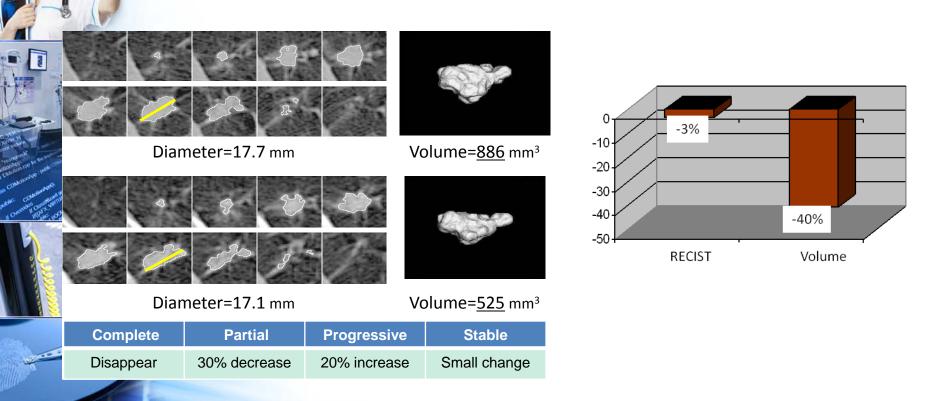
- Clinical care of patients
 - Detect and characterize disease
 - Predict course of disease
- Conduct of clinical trials
 - Define endpoints
- Adoption requires
 - Demonstration of ability to standardize
 - Assessment of reproducibility


Software and Systems Division

Biomarkers and Tests

- Biomarkers are defined in part by the "class" of available tests
 - Not defined by a single test or implementation
 - Defined by aggregated understanding of results for the class of tests
- Necessary to determine how the class performs

RECIST


- Response Evaluation Criteria In Solid Tumors
 - Published rules that define when cancer patients improve, stay the same, or worsen
- "The quantitative components of RECIST, the lesion size measurements, are measurable characteristics reflecting disease and response to treatment, and it seems reasonable to consider it alongside other imaging biomarkers."
 - Bleavins et al., Biomarkers in Drug Development: A Handbook of Practice, Application, and Strategy, Wiley, 2011

Source: http://www.recist.com

Software and Systems Division

RECIST vs. Volume

Source: Orhan Suleiman, Technical Problems in Imaging Based Trials, FDA

STUDY OVERVIEW

Software and Systems Division

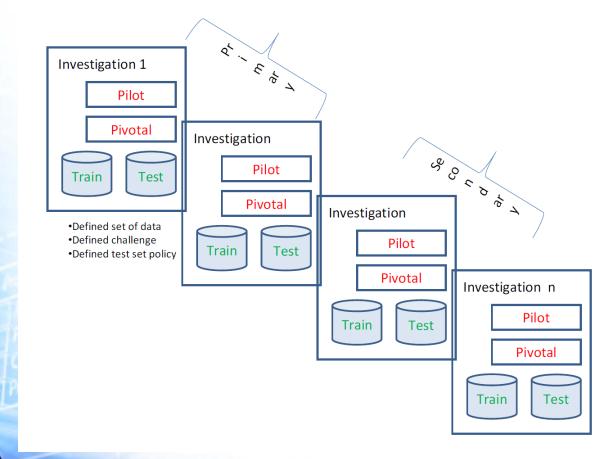
Motivations

- Nodule volume change is important
 - Diagnosis, therapy planning, response evaluation
- Measuring volume change requires accurate absolute volume measurement
- Phantom nodule volume can be measured with accuracy
- Use phantoms to quantify algorithm performance (for this part of study)

Goals

- Estimate inter- and intra-algorithm variability
 by the volume estimation from CT scans
 - Inform QIBA Volumetric CT Profiles
 - Provide context with incentives for participation and cooperation
 - Not which algorithm is the best

Participants


- Academic and commercial algorithm developers
- Radiologists and researchers with access to volumetric CT tools

Scope

- Automated segmentation algorithms which do not require user intervention
- Semi-automatic algorithms which require minimal user input

Overall Structure of Study

Software and Systems Division

Primary Endpoint

- Pilot Study
 - Smaller study
 - Sandbox for participant practice
 - Input for power study
- Pivotal Study
 - Publishable results
 - Number of cases determined by Pilot results

Benefits to Participants/Community

- Low-risk feedback to developers/users about algorithm performance
 - Relative to other algorithms
 - With respect to ground truth
- Improve overall understanding of algorithm performance in support of biomarkers
- Larger set of data for grant proposals
- Great training exercise for radiologists
 - Easy way to evaluate available systems

Participant Effort

- Depends on time required to measure and record volume
- Approximately 100 lesions available for Pilot Study

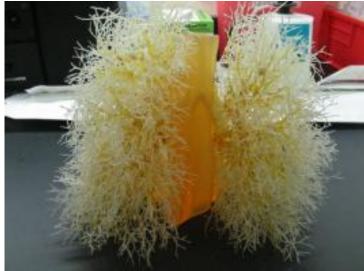
Software and Systems Division

STUDY DATA

Software and Systems Division

FDA CDRH Phantom Data

- Data for Volumetric Study 3A
- CT scans available via the NBIA for lung nodule size estimation assessment and image analysis software development
 - https://imaging.nci.nih.gov/ncia/login.jsf
- Reference
 - Marios A Gavrielides, Lisa M Kinnard, Kyle J Myers, Jenifer Peregoy, William F Pritchard, Rongping Zeng, Juan Esparza, John Karanian, and Nicholas Petrick, "A resource for the assessment of lung nodule size estimation methods: database of thoracic CT scans of an anthropomorphic phantom", Optics Express, vol. 18, n.14, pp. 15244-15255, 2010.


Advantages of FDA Phantom

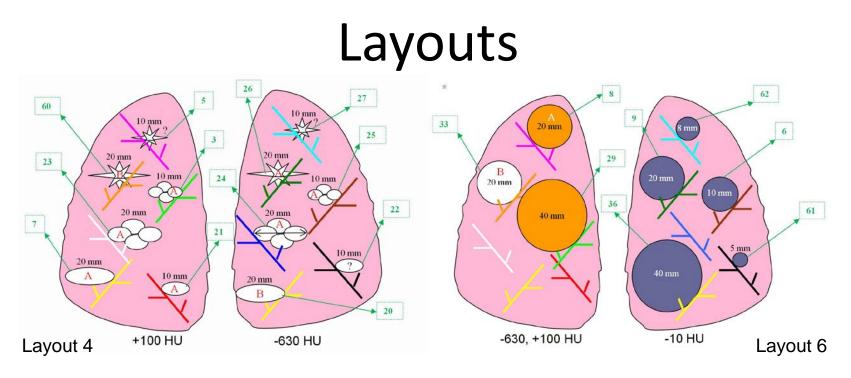
- Ability to generate scans with clinicallyrelevant
 - Locations
 - Shapes
 - Sizes

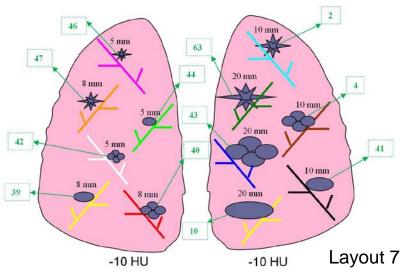
Software and Systems Division

Anthropomorphic Phantom

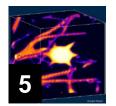
The anthropomorphic thoracic phantom and the vasculature insert on which synthetic nodules were attached before CT imaging

Software and Systems Division

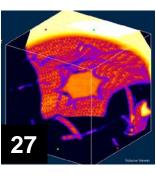


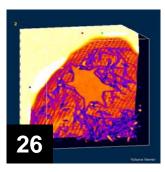


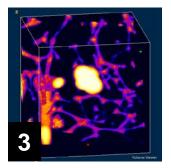
Synthetic Lesions

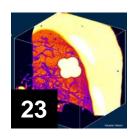

The synthetic lung nodules vary in size (5, 8, 10, 12, 20, & 40 mm), shape (spherical, elliptical, lobulated, & spiculated), and density (-800, -630, -10, & +100 HU)

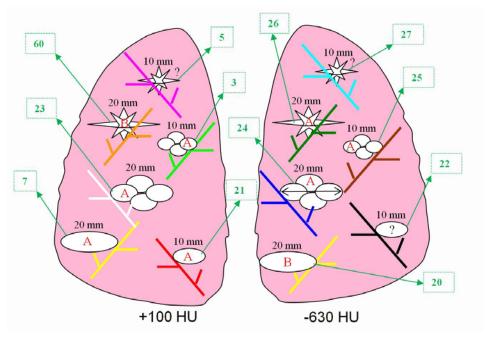
Software and Systems Division

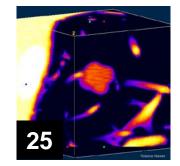


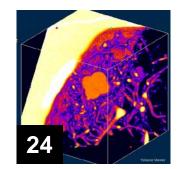


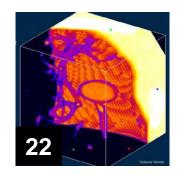


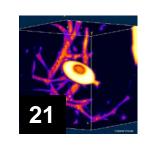

Lesions

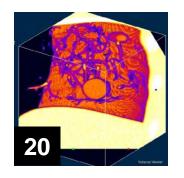

Series 1114 - FDA Layout 4

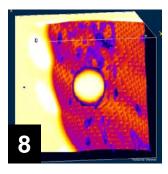


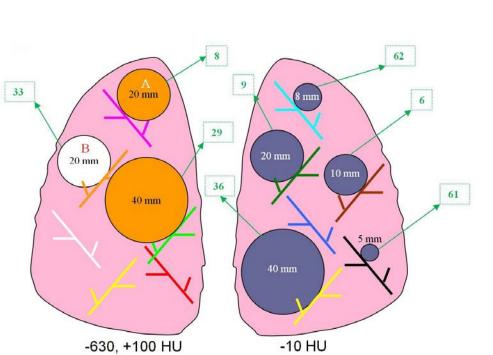


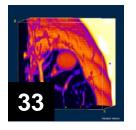


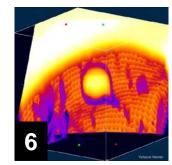




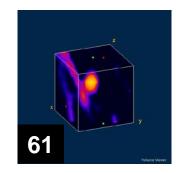


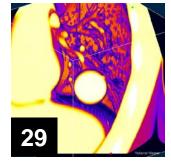


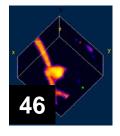


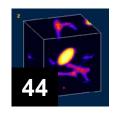

Lesions

Series 9559 - FDA Layout 6

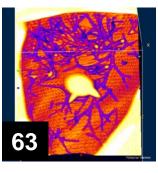

36

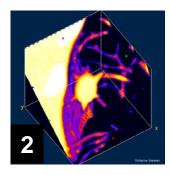


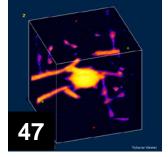


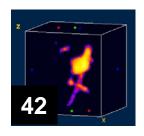

62

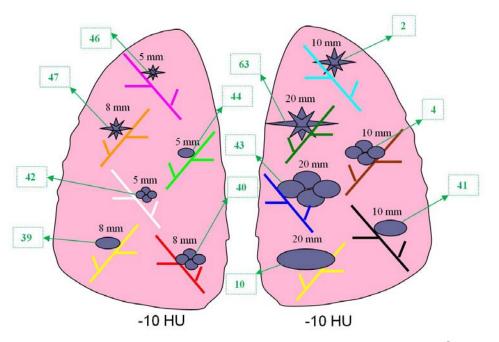
9

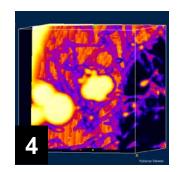


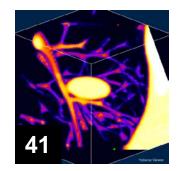


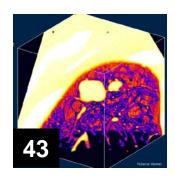


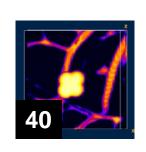

Lesions


Series 39 – FDA Layout 7











Series

Series	Layout	Slice Thickness
39	7	0.8
51	7	0.8
526	7	5
1114	4	0.8
1120	4	0.8
1126	4	0.8
7531	4	5
7537	4	5
7543	4	5
9076	6	0.8
9082	6	0.8
9088	6	0.8
9547	6	5
9553	6	5
9559	6	5

Software and Systems Division

Study Description File

- Excel Spreadsheet
 - Provides study data to participants
 - Seed points
 - Bounding boxes
 - Some ground truth
 - Captures participants results for analysis
 - Lesion Volume

Study Description Pilot 3A 1.0 for Participants