Ned Rouze, Yufeng Deng, Mark Palmeri, Kathy Nightingale

Phantoms provided by: Ted Lynch, CIRS

Clinical data – group SWS analysis presented in Palmeri et al, J. Hep, 2011.

Dispersion analysis of clinical data presented in: Nightingale et. al, IEEE UFFC IUS Proceedings 2013.

F3 Human Liver

group SWS ratio:1.35 (greater than 1 indicates dispersion)DisplacementVelocity2D FT

SWS = 3.7731

 $\mu = 8.07 \text{ kPa}, \eta = 4.42 \text{ Pas}$

SWS = 2.7994

Voigt model for $c(\omega)$, μ_1 = shear modulus μ_2 , η = shear viscosity

$$c(\omega) = \sqrt{\frac{2(\mu_1^2 + \omega^2 \mu_2^2)}{\rho(\mu_1 + \sqrt{\mu_1^2 + \omega^2 \mu_2^2})}}$$

Nightingale et al Proceedings of IEEE UFFC IUS symposium, Prague, 2013.

DUKE BIOMEDICAL ENGINEERING

F1 Human Liver

DUKE BIOMEDICAL ENGINEERING

Sample VE Phantoms vs. Human Liver

Voigt model dispersion fit to the 2D FT data for:

•our NAFLD patient data (black points)

• Best threshold (yellow point) with the largest AUROC for separating fibrosis stages \leq F2 from those \geq F3 in our NAFLD patient population

•CIRS E2117-X phantoms (x's and +'s)

To do: -Ship phantoms to Mayo for their analysis -Select two or three? recipes to use for phase 2... DUKE BIOMEDICAL ENGINEERING