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ABSTRACT 

Thirty-one lung cancer test-retest cases were analyzed by twelve participants in a multi-site study 

of algorithm performance on the segmentation of clinical CT scans. We evaluated variability of 

scalar volume measurements, including individual participant performance across test-retest 

repetitions, as well as the performance across algorithms. We also compared segmentation 

boundaries relative to reference standard segmentations.  We report the repeatability of 

measurements in test-retest cases for each participant, and reproducibility of measurements 

across participants. Repeatability coefficients (RC) ranged from .06 (best performing) to 1.5 

(least performing), corresponding to within-subject coefficients of variation of 2.1% to 54% 

respectively.  Reproducibility coefficient values (RDC) are somewhat greater than the lowest 

performing pooled participant’s repeatability value. The best algorithm performance is seen 

when measured tumors meet the measurability criterion defined in the QIBA Profile; including 

tumors that did not resulted in approximately 1-1/2 times the variability.  The value of editing 

segmentation results was equivocal; smaller tumors appear to be better without editing, but larger 

tumors benefit by editing. Linear mixed effects modelling was used to conclude that no more 

than two-thirds of the overall QIBA Profile variability claim of the system as a whole be 

allocated to analysis software if the overall system is to be compliant (or less if conditions such 

as the scanner settings are not held constant).  An important outcome of this work is that the set 

of metrics used for this analysis form a basis for future determination of compliance with the 

QIBA Profile. 
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I. INTRODUCTION 

Quantifying tumor volume change is being studied for use as an imaging biomarker with 

application to diagnosis, therapy planning and evaluating response to therapy.  A biomarker is 

defined generically as an objectively measured indicator of a normal or pathological process or 

pharmacologic response to treatment [1, 2]. A quantitative imaging biomarker is defined as a 

measurand where each of the following is true: 1) the difference between two measurements is 

meaningful, and 2) there is a clear definition of zero such that the ratio of two measurements is 

meaningful [3, 4]. The use of tumor volume as a predictor of outcome has been of interest for 

some time [5-7]. A number of authors have reviewed the use of tumor volumetry using computed 

tomography (CT) and how it has evolved [8-12]. A number of published studies investigate the 

link between tumor volume at CT and cancer disease status [13-23].   

On the technical level, biomarker assays need to be characterized in terms of bias and variability.  

Bias and variability in serial CT scans can be affected by a number of inter-related factors, 

including imaging parameters, tumor characteristics, and/or measurement procedures [15].  

These effects have to be understood and quantified to establish confidence in the use of 

volumetric CT measurements for clinical study cohorts. A number of technical studies have been 

performed toward that goal [24-39].  

The Quantitative Imaging Biomarker Alliance (QIBA) [40] has defined standard procedures for 

measuring lung tumor volume changes in a document called a Profile, which defines standard 

working procedures for accurate and reproducible measurement of imaging biomarkers. The 

Profile is defined in part by available literature, and in part by “groundwork” studies to 

investigate sources of error in volume estimation, for example, by different acquisition protocols, 

scanner models, etc. An important branch of study that QIBA has commissioned is an 

investigation into volumetric measurement algorithm performance, under the name “3A”.  The 

aim of the first QIBA 3A study was to estimate intra- and inter-algorithm bias and variability on 

phantom data sets.  The study was organized as a public challenge where participant algorithms 

were applied to FDA acquired phantom CT scans of synthetic lung tumors in anthropomorphic 

phantoms [41]. Such a study design is effective for a focus on bias, since ground truth is known, 

but is likely to underestimate variability, since typically clinical data sets are more challenging 

due to a variety of biological and technical reasons.  As a result, QIBA has also undertaken 

studies on clinical data, notably a study of human reader performance on test-retest data, under 

the name “1B”.  The 1B study was undertaken to determine the variability of lesion size 

measurements in CT datasets of patients imaged under a “no change” (“coffee break”) condition 

and to determine the impact of two reading paradigms (independent readings of both time points 

vs. locked sequential readings) on measurement variability (publication in progress). This second 

3A project is best understood as a complement to both the first 3A study by examining inter-

algorithm variability for the measurement of lung tumors in clinical as opposed to phantom data 

sets, and the 1B study by using the same clinical data. 
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A collaborative approach was taken to design the challenge study, resulting in the Study 3A: 

Inter-method Study with Test-retest Clinical Data: Study Design document found at [42].  The 

challenge used CT scans of 31 lung cancer patients, scanned twice within 15 minutes and 

reconstructed as thin transverse slices. Twelve participants from a diverse set of industry and 

academic groups downloaded the images and supporting information and uploaded results, using 

a system called  QI-Bench [43]. QI-Bench provides open-source informatics tools to characterize 

the performance of quantitative medical imaging, including support for accessing image 

archives, representation of meta-data, and computing statistical metrics consistent with QIBA’s 

initiative in metrology. 

Whereas ground truth for volume was not available to directly assess bias, this study was based 

on test-retest data, consisting of clinical scans of patients repeated close enough in time that no 

biological change could have taken place. As such, the repeatability of volume measurements in 

test-retest sets may be determined for each algorithm (intra-algorithm repeatability) as well as 

across algorithms (inter-algorithm reproducibility).  Using actual segmentation results (not just 

the computed volumes) that were submitted by a subset of the participating groups, it was also 

possible to compare segmented boundary contours, providing further metrics to characterize 

performance and providing insight into the differences in algorithm performance.  The metrics 

computed based on measured volumes taken together with the metrics available through 

analyzing the contours may serve as means to determine relative performance levels for use in 

determining whether a given algorithm may be said to be “QIBA compliant,” understood as 

having performance at or better than requirements specified under the QIBA Profile [44].  

Additionally, the results of this study provide experimental data for updating the Profile 

requirements themselves as our understanding of attainable performance is extended. 

II. MATERIALS AND METHODS 

Data and Data Collection 

Thirty-one non-small cell lung cancer test-retest cases were used in this analysis  These cases 

were contributed to the RIDER database from Memorial Sloan Kettering [45], with a mean 

patient age of 62.1 years, range, 29–82 years; 16 were men (mean age, 61.8 years; range, 29–79 

years) and 16 were women (mean age, 62.4 years; range, 45–82 years). Each patient was scanned 

twice within a short period of time (< 15 minutes) on the same scanner and the image data was 

reconstructed with thin sections (< 1.5 mm thick).  CT scans were obtained with a 16–detector 

row (LightSpeed 16; GE Healthcare, Milwaukee, Wisconsin) or 64–detector row (VCT; GE 

Healthcare) scanner. Parameters for the 16–detector row scanner were as follows: tube voltage, 

120 kVp; tube current, 299–441 mA; detector configuration, 16 detectors x 1.25-mm section gap; 

and pitch, 1.375:1. Parameters of the 64–detector row scanner were as follows: tube voltage, 120 

kVp; tube current, 298–351 mA; detector configuration, 64 detectors x 0.63-mm section gap; and 

pitch, 0.984:1. The thoracic images were obtained without intravenous contrast material during a 

breath hold. Since the second scan was considered as a separate scan, its field of view was set 
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given the patient’s second scout image. Adjustment was allowed owing to the patient’s position 

in the scanner. Thin-section (1.25 mm) images were reconstructed with no overlap by using the 

lung convolution kernel and transferred to the research picture archiving and communication 

system server where Digital Imaging and Communications in Medicine (DICOM) images are 

stored.  

One tumor per patient was selected by clinical staff at Columbia University for measurement (31 

tumors total), and each tumor had two repetitions (“test” and “retest”). The approximate diameters 

ranged from 8 mm to 40 mm.  The shapes of the selected tumors ranged from simple and isolated to 

complex and cavitated. To facilitate the comparison of results with the prior QIBA 1B study, the 

tumors were further subdivided on the basis of “measurability” criteria as described in the QIBA 

Profile.  Specifically, the claims section of the QIBA profile states that the claims are only 

applicable “when the given tumor is measurable (i.e. tumor margins are sufficiently conspicuous 

and geometrically simple enough to be recognized on all images….) .and the longest in-plane 

diameter of the tumor is 10 mm or greater”.  Therefore, tumors described as meeting the QIBA 

Profile were those that were judged to have clearly identified tumor margins; all tumors used in 

this study exceeded the 10 mm diameter threshold.  

Illustrative examples are given in Figure 1.  

   

(a)        (b)      (c)   (d) 

Figure 1: Examples of tumors used. (a) and (b) are examples of tumors that were judged to have met the 

QIBA Profile, while (c) and (d) were examples of tumors that were judged to have not met the QIBA Profile.  

RSNA staff handled participant agreements and communications so as to establish and maintain 

anonymity of participants with respect to the results. Participants downloaded the challenge data 

from QI-Bench, including the raw image data as well as location points defined for each tumor in 

the scans. The location points were defined to lie within the tumor margin, but participants were 

allowed to select different or multiple seed point(s) for their individual algorithms, provided they 

utilized the tumor identification scheme provided. Each participating group measured each tumor 

at each repetition. Some of the groups submitted data from the algorithm without modification 

(fully automatic), others submitted data that had been adjusted to varying degrees by a reader 

(semi-automated), and one group submitted both (without post-editing under one group ID and 

adjusted under a separate group ID). 

Two statistical analyses were conducted, based on the type of data: 1) variability of scalar 

volume measurements, including individual participant performance across test-retest repetitions 

as well as the performance across algorithms, and 2) comparison of segmentation boundaries 
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relative to reference standard segmentations.  The former allows us to compare the performances 

of these imaging algorithms by measuring agreement of the computed result when the algorithm 

is held constant as well as when measured by different algorithms, regardless of the similarity in 

the contours that give rise to the scalar volumes; the latter provides the means by which differing 

algorithms may be evaluated in terms of the specific segmentation task they are performing 

which gives rise to the computed scalar volumes. 

Variability of Scalar Volume Measurements 

Data transformation:  The models used in our analysis assume a constant variance in volume 

measurements across the range of the responses. Since measurement variation was not constant 

across the range of volumes and increased with increasing volume measurements, volume 

measurements were transformed so that the constant variance assumption would hold.   In order 

for residual values (the differences between measured volumes and mean volumes calculated 

from the set of algorithms) to be the same order of magnitude for all tumor sizes, a log-

transformation was applied to each volume.   As a result, residuals approximately followed a 

normal distribution. Although analyses were conducted on the log-scale, data is presented on the 

original scale, where possible.  

Based on the transformed data, we undertook two analyses of volume measurement variability in 

this study, repeatability and reproducibility [3] using visual as well as numeric methods. Plotting 

test-retest replications (for repeatability) or pair-wise combinations of algorithms 

(reproducibility) appear as a straight line of unity in the presence of agreement.  Numerically, we 

denote the measurement of the j
th

 algorithm for the i
th

 subject at the k
th

 replication as Yijk, where 

j=1,…,11, i=1, …,31, and k=1, 2.  We used a simple general model 𝒀𝒊𝒋𝒌 = 𝝁𝒊𝒋 + 𝜺𝒊𝒋𝒌, where Yijk 

and ijk are the observed value and measurement error and where  is the population mean. 𝝁𝒊𝒋 is 

conditional on the mean of infinite replications made on subject i by algorithm j. Based on these 

analyses, we compute multiple metrics because each provides complementary insight into 

performance. 

Repeatability across test-retest repetitions within participants, or intra-algorithm variability, 

refers to the variability of measuring the volume of the same tumor from repeated imaging of 

subjects with intentionally short interval so that biological features could be reasonably assumed 

to have remained unchanged. The Bland and Altman method produces an Upper Agreement 

Limit (UAL) and the Lower Agreement Limit (LAL) which provides a range within which we 

expect 95% of the differences between replicate measures of a given algorithm [46, 47]. The 

Concordance Correlation Coefficient (CCC) was used as a measure of repeatability,  computed 

as in [48]. CCC is a measure of agreement that is a product of the correlation coefficient, 

penalized by a bias term that reflects the degree to which the regression line differs from the line 

of agreement. The further the regression line is from the line of agreement, the higher the 

penalty, and the lower the CCC. The repeatability coefficient (RC) is a function of the standard 

deviation of the measurements: 
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𝑅𝐶 = 1.96√2𝜎𝜀 
2 = 2.77𝜎𝜀. 

We define a range of measurements (-RC to +RC), in which two normally-distributed 

measurements are expected to fall for 95% of replicated measurements [49]. The within-subject 

standard of deviation (wSD) is estimated as square root of the averaged sample variances across 

tumors, where the sample variance is computed from the replications for each tumor. This wSD 

assumes that the within-tumor variance is the same across all tumors. The within-subject 

coefficient of variance (wCV) is a relative measure of repeatability, which we calculate as 

wSD/mean and thus is proportional to the magnitude of the tumor’s size. 

Reproducibility across algorithms was analyzed similarly but instead of the two repetitions, 

pairwise comparisons were made between algorithms.  In this case, the Limits of Agreement 

(LOA) by Bland and Altman provides a range within which we expect 95% of the differences in 

measurements between two algorithms to lie. The reproducibility coefficient (RDC), similar to 

RC, was calculated as the least significant difference between two measurements taken under 

different conditions, in this case, by two different algorithms. Linear Mixed Effects (LME) 

modeling was used to separate the factors that affect variability.  Each of these terms was 

considered as a random effect in the model. Model assumptions were evaluated with Q-Q 

(quantile-quantile) and observed-versus-fitted plots.  We are interested in measuring to what 

extent algorithm versus other variance contributes to overall error, to better define the QIBA 

claim. 

Comparison of Segmentation Boundaries 

Whereas the nature of clinical data makes actual ground truth unavailable, we can approximate a 

reference segmentation using those pixels with the highest agreement among participants.   We 

first produced a reference segmentation using the Simultaneous Truth And Performance Level 

Estimation (STAPLE) method [50]. This filter performs a pixel-wise combination of an arbitrary 

number of input images. In our case we use the segmentations performed by participant 

algorithms. Each input segmentation is weighted based on its "performance" as estimated by an 

expectation-maximization algorithm, described in detail in [51]. We then compare each 

individual segmentation result to this reference data. We compute Sensitivity (SE) or true 

positive rate, based on a confusion matrix C, where Cuv is the number of voxels segmented with a 

particular algorithm u, compared with the reference data v. For any label w, we calculate true 

positive (TP), true negative (TN), false positive (FP), and false negative (FN) as: 

𝑇𝑃 = 𝐶𝑤𝑤    𝑇𝑁 = ∑ ∑ 𝐶𝑢𝑣
𝑁
𝑣=1
𝑣≠𝑤

𝑁
𝑢=1
𝑢≠𝑙

    𝐹𝑁 = ∑ 𝐶𝑢𝑤
𝑁
𝑢=1
𝑢≠𝑤

    𝐹𝑃 = ∑ 𝐶𝑣𝑤
𝑁
𝑣=1
𝑣≠𝑤

. 

𝑆𝐸 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃). 

Typically SE is accompanied by Specificity, otherwise known as the true negative rate.  

However, this quantity has a strong dependence on the size of the field of view which is constant 

for all participants so we omit reporting this as it is not informative. TP and FN computations  
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are used in the calculation of  two additional spatial overlap measures, the Jaccard index [52], 

and Sørensen–Dice coefficients [53, 54]: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
     𝑆ø𝑟𝑒𝑛𝑠𝑒𝑛𝐷𝑖𝑐𝑒 =

2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
 

As compared to Sensitivity, the Jaccard index penalizes false positives, i.e., if the candidate 

segmentation is too large because it includes anatomy not contained in the reference.  Sensitivity 

would not pick this up, but the Jaccard index does.  Sørensen–Dice not only does this, but 

weights the overall measure stronger than the others on true positives; i.e., it penalizes candidate 

segmentations that haven’t picked up anatomy that is contained in the reference. While at some 

point it may be evident which is the more important, for this work we compute and present all 

three types of numeric comparisons, collectively described as “overlap metrics.” 

III. RESULTS 

Twelve groups participated in the challenge by submitting volume readings and five of those 

groups also submitted segmentation objects, four of which were compatible for analysis.  The 

following groups participated in the challenge study (sorted in alphabetical order rather than in 

numeric order of the IDs): 

 Fraunhofer MEVIS 

 GE Healthcare 

 ICON Medical Imaging 

 KEOSYS 

 MEDIAN Technologies 

 Medical University of South Carolina 

 Mirada Medical  

 Perceptive Informatics 

 Siemens AG 

 UCLA 

 University of Michigan 

 Vital Images 

See the appendix for detailed algorithm descriptions for each of the participating groups.  (Note 

that three groups (Group01, Group09, and Group13) initially applied but did not submit results, 

and Group10 and Group16 were synonymous IDs.)  

The following subsections present the results of the analyses described above: 

1. Variability of scalar volume measurements: 

1.1. Descriptive statistics and transformation. 

1.2. Repeatability across test-retest repetitions within participants, using numeric calculation 

and Bland-Altman analysis to report UAL, LAL, wSD, RC, wCV, and CCC. 

1.3. Reproducibility across participating algorithms: 

1.3.1. Consider heteroscedasticity to determine a set to be pooled; 

1.3.2. Analysis including all tumors / all algorithms: 
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 Numeric calculation and Bland-Altman analysis to report UAL, LAL, and 

RDC. 

 LME model to assess subject, algorithm, and residual variance. 

1.3.3. Stratified analyses based on “measurability” criterion defined in the QIBA Profile 

and another that partitions algorithms according to degree of post-editing. 

2. Comparison of tumor segmentation boundaries: 

2.1. Creation of reference segmentation for each patient and each test-retest repetition. 

2.2. Calculation of sensitivity, Jaccard index, and Sørensen–Dice coefficients. 

2.3. Merging and plotting of histograms by metric and participant. 

1. Variability of Scalar Volume Measurements 

Our goal in this section of the results was to determine the repeatability in volume calculations 

across acquisitions in test-retest data for each participant, and to determine the reproducibility of 

these results across all participants. 

1.1 Descriptive Statistics and Transformation 

Basic descriptive statistics on submitted measurements are given in Table 1, based on 

measurements of 31 lung tumors at each of two repetitions by 12 participants, and a total of 744 

measurements. 

Table 1: Basic Descriptive Statistics for measured tumor volume 

Basic Descriptive Statistics (mm
3
) 

Arithmetic Mean 2.41E+04 

Geometric mean 8.32E+03 

Median 9.11E+03 

Range 2.77E+05 

Minimum 3.00E+00 

Maximum 2.77E+05 
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Figure 2 summarizes the range and distribution of these readings.  The distribution is skewed due 

to very few large reading values, also seen in Table 1, where the mean is much higher than the 

median. 

 

Figure 2: The distribution of measured values of tumor volume (Reading) across image acquisitions and 

participants. 

1.2 Repeatability Across Test-Retest Repetitions Within Participants 

Repeatability was assessed separately for each participating group since by definition it involves 

holding the algorithm constant. Individualized reports were prepared for each participant 

accordingly.  Results for Group12 are given to illustrate the method, but each participant had 

different results. Variability of volume measurements is shown in Figure 3, first by plotting 

volumes from the first acquisition against those of the second.  Like the histogram displayed in 

Figure 2, the distribution of volumes is skewed.  Furthermore, this figure illustrates that the 

variation in the test and retest measurements increases with the mean.  An assumption of a 

Bland-Altman analysis is that the variation is constant across the range of the response.  This 

pattern indicates that a transformation of the data is necessary.  The log-transformation is 

commonly applied to skewed data; this transformation helped the data to meet the assumptions 

of the analysis.  The Bland-Altman plot is displayed on the right side of Figure 3, and the 

variation on the transformed scale is approximately constant across the range.  The 95% limits of 

agreement on the log10 scale are -0.19 and 0.24.  Consider, for example, a mean volume reading 

of 1000 mm
3
 (or 3 on the log10 scale).  The Bland-Altman limits of agreement would be 

between 646 and 1738 (or 10
2.81

 and 10
3.24

, respectively).  Next, consider a mean volume reading 

of 100,000.  The Bland-Altman limits of agreement here would be 64,565 and 173,780 (or 10
4.81

 

and 10
5.24

, respectively). 
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Figure 3: Results of Intra-algorithm analysis: Left panel: Scatter plot for test-retest conditions in the original 

units of measurement. Notice that the variation increases with the volume (labelled TTB).  This artifact 

implies that the data need to be transformed prior to Bland-Altman analysis.  Right panel: Bland-Altman 

chart on the log-transformed data.  The Upper Agreement Limit=0.24 log(mm
3
), and the Lower Agreement 

Limit=-0.19 log(mm
3
).  For an average volume of 1,000 mm

3
, the agreement limits are 646 mm

3
 and 1,738 

mm
3
. 

Results across the participating groups are presented in Table 2.  The analyses used to compute 

the overall statistics were conducted on the log-transformed scale. Stratified analyses were used 

to compute the repeatability metrics based on the original scale, for the small (< 4189mm
3
 or a 

diameter less than about 20mm for a sphere) vs. large (> 4189mm
3
 or diameter greater than 

about 20mm for a sphere) tumors.  Seven of the 31 tumors were small by this criterion. 

Table 2: Repeatability results: reporting CCC (Concordance Correlation Coefficient), RC (repeatability 

coefficient), RCLB and RCUB (lower bound and upper bound), and wCV (within-subject coefficient of 

variance). 

 
All Tumors Small Tumors, vol<4189 mm

3 
(n=7) Large Tumors, vol>4189 mm

3 
(n=24) 

Group CCC RC [LB,UB] (log) wCV (%) CCC RC [LB,UB] (mm3) wCV (%) CCC RC [LB,UB] (mm3) wCV (%) 

Group02 0.97 0.35 [.28,.47] 13.0 0.99 273 [184,522] 6.6 0.99 8913 [6927,12502] 11.3 

Group03 0.71 1.5 [1.2,1.99] 54.0 0.77 1974 [1458,3055] 41.6 0.87 19170 [14277,29176] 36.1 

Group04 1.00 0.06 [.05,.08] 2.1 0.99 326 [224,594] 6.5 1.00 2163 [1673,3061] 2.4 

Group05 1.00 0.06 [.05,.08] 2.2 0.97 506 [334,1029] 10.3 1.00 3479 [2704,4881] 3.2 

Group06 1.00 0.09 [.07,.12] 3.1 0.99 299 [206,546] 6.8 1.00 4117 [3184,5827] 4.9 

Group07 1.00 0.09 [.07,.11] 3.1 0.98 390 [268,712] 8.9 1.00 4208 [3254,5955] 5.3 

Group08 1.00 0.06 [.05,.08] 2.1 1.00 273 [188,499] 5.5 1.00 3536 [2734,5004] 4.1 

Group11 0.98 0.36 [.29,.48] 13.0 0.64 1920 [1320,3505] 58.5 0.84 49929 [38615,70667] 46.4 

Group12 0.99 0.22 [.17,.29] 7.8 0.90 1116 [768,2037] 25.0 0.91 51977 [40198,73565] 38.9 

Group14 1.00 0.09 [.07,.12] 3.2 0.99 317 [214,606] 7.6 0.98 13069 [10158,18333] 13.3 

Group15 1.00 0.11 [.08,.14] 3.8 0.98 567 [396,995] 12.3 1.00 2719 [2092,3886] 3.2 

Group16 1.00 0.1 [.08,.13] 3.4 0.97 452 [299,920] 12.5 0.99 8682 [6779,12079] 10.2 
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1.3 Reproducibility Across Participating Groups 

Reproducibility was assessed for various combinations of the tumors, as shown in Table 3. 

Table 3: Number of tumors analyzed in each strata 

Analysis Strata N 

Overall All 31 

Small 7 

Large 24 

Profile=Yes All 20 

Small 7 

Large 13 

Profile=No All 11 

Small 0 

Large 11 

Human 
Edited 

All 31 

Small 8 

Large 23 

No editing All 31 

Small 8 

Large 23 

1.3.1 Determine Data to be Pooled 

The individual repeatability results were inspected visually for bias and heteroscedasticity, and 

the data for those groups with similar distributions were pooled for the reproducibility analysis. 

Group03 was determined to have sufficiently different results than the other groups and was not 

included within the analysis. Additionally, review of the data exposed five anomalous readings 

(from three subjects by four groups). Volumes differed by log-orders of magnitudes from the rest 

of the data, suggesting data transcription errors. These were removed from the reproducibility 

analyses. 
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1.3.2 Analysis Across All Pooled Data 

The pairwise performance across acquisition repetitions is illustrated in Figure 4.  Like Figure 3, 

the left panel presents the data in the original scale of measurement (mm
3
), while the Bland-

Altman analysis was performed on log-transformed data due to the fact that the variation in 

measurement increased with volume.  The 95% limits of agreement on the log10 scale are -0.35 

and 0.39.  Consider, for example, a mean volume reading of 1000 mm
3
 (or 3 on the log10 scale).  

The Bland-Altman limits of agreement would be between 447 and 2455. 

  

Figure 4: Results of Inter-algorithm analysis: Left panel: Scatter plot for all pairs of readers in the original 

scale of measurement.  Data were log-transformed prior to Bland-Altman analysis.  Right panel: Bland-

Altman chart on the log-transformed data.  The Upper Agreement Limit=0.39 log(mm
3
), and the Lower 

Agreement Limit=-0.35 log(mm
3
).  For an average volume of 1,000 mm

3
, the agreement limits are 447 mm

3
 

and 2455 mm
3
. 

The RDC was 0.37, which follows closely with the Bland and Altman limits.  This value implies 

that we expect the difference between any two measurements taken on a subject regardless of 

reader or repetition is expected to be within +/- 0.37 log units, or about 14%. 

Results of the Linear Mixed Effects (LME) model assess the degree to which algorithms 

contributed to overall variability versus that due to the subject or residuals. Model output is 

presented in Figure 6, depicted in a chart illustrating the weights of the four different variables 

on overall volume variability captured by the model.  
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Figure 5: Results of LME for overall reproducibility analysis, represented in a Pareto chart of effect sizes 

Tumor variation itself dominates with 96% of total variation, which is expected for meaningful 

biomarkers, in that this is the component which is due to the measurement itself. Tumor-by-

algorithm interaction variance comprises the next highest variance, accounting for 3% of the 

variance, indicating that tumors are read differently by different algorithms, which is the primary 

reproducibility result. Residual variance of 1% accounted for factors including the test-retest 

variability itself which is not attributable to the algorithm performance. 

Figure 6 shows the observed data (in mm
3
 and log(mm

3
)) plotted against fitted data (fitted data 

being an indication of how the model interpreted the data). 

  
 

Figure 6: Observed vs. fitted on the log scale (left), and original scale (right). 

Finally the Q-Q plot in Figure 7 demonstrates the linearity of a comparison of the distribution of 

residual volume values with a standard normal distribution. The Q-Q plot from this model 
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indicates that the core of the residuals follow a normal distribution.  However, a handful of large 

residuals cause deviations from the expected distribution. 

 

 

 

Figure 7: Q-Q plot indicating that the core of the 

residuals follow a normal distribution, but the 

distribution has long tails due to a handful of 

extreme values. 

As indicated, the primary reproducibility due to algorithm is captured in the subject by reader 

interaction, as this quantifies the extent to which different algorithms measure different tumors 

differently.  Figure 8 presents an interaction plot, where the x-axis = subject number ordered by 

average volume, and the y-axis = log(volume), with points colored and connected by 

algorithm.  We see that the lines all trend together, but the lines cross each other.  The crossing 

indicates that there is an interaction between subject and algorithm.  (Alternatively, if all lines 

were parallel, then the interaction would be near-zero.) 

 

Figure 8: Parallel line plot.  Tumors are ordered by average recorded volume across algorithms and test-

retest values (x-axis). Points are connected by algorithm.  The interaction term in the model accounts for the 

degree to which the lines cross in the figure. 
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1.3.3 Other Stratified Analyses  

In addition to computing the metrics on all tumors, two stratified reproducibility analyses were 

performed. We looked at the effect on variability of the degree of automation used by the 

algorithm. We also looked at the effect on variability of classification of tumors, dividing them 

into two types: (a) tumors that could be classified as meeting the conditions described in the 

“Claims” section of the QIBA Profile, and (b) tumors that did not meet these conditions.  

Four other stratified analyses were carried out similarly to that for all of the pooled data, as 

outlined in Table 3. Results for all 5 analyses are summarized in Table 4 below. 

Table 4: Summary of Reproducibility Results to Inform QIBA Claim 

 
All Tumors Small Large 

  
95% LOA 

(log(mm3)) 
95% LOA 

(mm3) ICC 
RDC 
(log) 

Alg/Residual 
Variance 

(%:%) 
RDC 

(mm3) 
RDC 

(mm3) 
Combined -.035/0.39 447/2455 0.96 0.37 3:1 1290 28205 
Profile=Yes -0.30/0.33 468/2138 0.97 0.32 2:1 1290 6369 
Profile=No -0.43/0.49 372/3090 0.87 0.45 10:2 

 
41074 

Editing -0.38/0.39 417/2455 0.96 0.39 4:1 1343 26760 
No editing -0.25/0.38 562/2399 0.97 0.33 2:1 1234 33004 

2.1 Create Reference Truth Segmentations 

Figure 9 shows an example of a reference segmentation. One such reference segmentation was 

created for each test-retest repetition. 

 

Figure 9: Example of a reference truth segmentation. (RIDER-1129164940, first repetition) 

As indicated in the methods section, the reference segmentations were formed using an 

expectation-maximization algorithm.  As a practical matter, that algorithm attempts to use all 
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input segmentations to influence the results according to the level of overlap among them. 

However, if one of the inputs is so far from the others so as to constitute a highly dissimilar 

input, the algorithm fails to produce a result.  We had four such cases among our 62 cases (31 

subjects x 2 test-retest repetitions), as summarized in Table 5. 

Table 5: Cases where reference segmentation was generated by removing an outlier 

Subject Repetition Outlier Group 

2283289288 0 Group03 

2283289288 1 Group03 

1500037140 1 Group03 

344011628 1 Group10 

Additionally, reader segmentations from the QIBA 1B study were also utilized to create a 

separate reference used to represent typical results of readers on these same data. 

Figure 10 shows an example of one participants’ overlap with the corresponding reference 

segmentation.  Of course, each participant can be overlaid accordingly and it is on this basis that 

the overlap metrics are computed. 

 

Figure 10: Example of a participating group's result superimposed on to the reference.  TP voxels are 

rendered as light cyan, FN voxels as dark cyan, and FP as grey.  TN pixels are displayed as reduced intensity 

background image. (RIDER-1129164940, first repetition, Group08) 
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2.3 Merging and Plotting of Histograms by Metric and Participant 

Overlap metrics were calculated for each participant and test-retest repetition.  A histogram of 

these results was created for each participant and merged onto a plot that compares the relative 

performance of each.  The plots are shown in Figure 11. 

  

 

Figure 11: Merged histograms for each of three 

overlap metrics.  Participants are plotted with 

separate colors but combined on each plot to 

facilitate comparison.  The y axis represents the 

number of the 62 sets at each index level. (Note: 

Group10 in these results accords with Group16 in the 

variability analyses of scalar volume.) 
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IV. DISCUSSION 

Analysis of test-retest repeatability provides metrics about what level of repeatability to expect 

from individual algorithms. Overall, repeatability was high as indicated by CCC near 1 and 

wCVs below 10% for most participating groups.  Group03 performed the least well, Groups 02, 

11, and 12 moderately well, and other groups better. Individualized reports inclusive of raw data 

and intermediate analysis results have been provided to participating groups in the challenge.  

The value of the results is highest to those who contributed actual segmentation boundaries. The 

results of analyzing reproducibility across the algorithms are summarized in Table 4, and can be 

used to validate the QIBA claim. The RDC values are particularly instructive.  The RDC values 

approximately correspond with that participant with the least performing repeatability value 

(plus a fraction) (see Table 2). 

By these results, the best case is when algorithms are used on tumors meeting the measurability 

criterion defined in the Profile, and the worst performance for tumors not meeting measurability 

criteria, with variability being approximately 1-1/2 times as much, by a comparison of RDC 

values of .32 versus .45, respectively.  The value of editing was equivocal; smaller tumors appear 

to be better without editing, but larger tumors benefit by editing. This may be intuitive, in that 

larger tumors more often include features which may or may not be considered tumor mass.  

An additional consideration for which these data are informative concerns the extent to which the 

algorithm may be considered “the end of the line” with respect to variability of the entire process 

of evaluating tumor size.  One line of thinking is that the algorithm’s performance dominates 

variability earlier in the processing chain and that compliance may be given by performing at or 

better than the overall system claim.  These data suggest that there is as much as one-half of the 

variability coming from sources independent of the algorithms, to as little as one-fifth.  On this 

basis, no more than two-thirds of the overall variability claim of the system as a whole can be 

allocated to analysis software if the overall system is to be compliant (or less if the scanner is not 

held constant).  

The greatest utility of this work from a participant’s point of view, or a company seeking to 

commercialize analysis software for tumor volumetry, is a comparison of their algorithm with 

other similar algorithms’ performance, and the measure of a performance standard that can be 

defined by QIBA by this type of analysis. Participants also benefit by algorithm comparisons to 

identify weaknesses of their algorithms and areas needing improvement. This is greatly aided by 

the results of the segmentation object analysis, which provides insight into why volume 

calculations under- or over-estimate a volume (see Figure 10 for examples of this).  Some 

particularly illustrative cases, each representing different circumstances, are shown in Table 6.  

Full evaluation of these results is beyond the scope of the present study but the detailed maps are 

provided to participants who contributed segmentation objects. 
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Table 6: Interesting cases 

SUBJID REP 

SE 3A Volume 
(mean, 
stdev) 

1B Volume 
(mean, 
stdev) Notes 

Group 
03 

Group 
04 

Group 
08 

Group 
10 

1129164940 0 0.55 0.94 0.94 0.86 49cc, 24cc 44cc,14cc Seems typical 

1500037140 0 0.91 0.92 0.83 0.97 7cc,.1.4cc 6cc,0.5cc Seems typical 

1760553574 0 0.04 0.96 0.77 0.86 9cc,12cc 3cc,9cc All struggled 

1801720707 1 0.22 0.87 0.37 0.30 45cc,289cc 0.6cc,0.6cc Grp 5 and 12 very high 

2016615262 0 0.00 0.93 0.89 0.97 25cc,23cc 20cc,4cc Grp 3 low, Grp 11 high 

2151469008 0 0.13 0.92 0.91 0.91 29cc,16cc 27cc,22cc Algs tighter here (except Grp 3) 

2357766186 0 0.25 0.85 0.96 0.90 16cc,19cc 2cc,4cc Grp 3 and 15 like rdrs 

2539508879 0 0.86 0.95 0.92 0.91 8cc,1cc 7cc,3cc Algs tighter here 

2619750334 1 0.58 0.90 0.94 0.97 80cc,49cc 69cc,59cc Algs tighter here (except Grp 3) 

2799584460 1 0.97 0.68 0.71 0.97 0.6cc,0.3cc 0.8cc,0.5cc Algs tighter here 

3115188676 0 0.00 0.77 0.99 0.72 11cc,9cc 12cc,4cc Grp 3 much lower 

5195703382 1 0.14 0.27 0.70 0.73 27cc,40cc 0.6cc,0.3cc Grp 15 like rdrs, rest different 

 

 

 

 

Figure 12: Comparison of algorithm derived reference versus manual contouring derived reference. Note that 

in general the algorithm result has more jagged edges and includes anatomic features not included by 

readers. In this example, the average volume resulting from algorithms was 49,435mm
3
 whereas readers 

43,731mm
3
.  In general algorithm segmentation result in larger volumes though the factor varies by degree of 
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subject difficulty. (Positioned to the same slice but scaling differs based on technical reasons not relevant to 

the comparison.) (RIDER-1129164940, first repetition) 

Finally, Figure 13 shows a visual comparison of the performance of the 12 participating groups. 

 
Figure 13: Aggregate chart proposing a way to represent the relative performance of groups and how they 

relate to the QIBA Claim 

RC tells cross-sectional variability as an absolute measure, wCV provides a weighted indication, 

and the overlap metrics indicate the degree to which the volumes were computed on an 

appropriate segmentation. 

V. CONCLUSIONS 

Based on the specific role of tumor volumetry in clinical practice, we have computed 

performance metrics critical to the role of the biomarker including repeatability and reducibility 

of scalar volumes as well as overlap measures computed from analyzing segmentation objects 

favoring consistency.  For measurement of tumor volume to be used as a predictor of true 

biological feature change or difference, tumor volume must predictably reflect the true and 

biologically-relevant feature measurement, dependent upon results having a high standard for  

repeatability and reproducibility.  In addition to repeatability and reproducibility variability, this 

study contributes to the understanding of whether resulting segmentations reliably represent what 

would be considered the actual segmentation of the given tumor. We have described methods for 

estimating these metrics, and applied them to twelve specific algorithms on non-small cell lung 

cancer datasets. Going forward, these metrics can be computed on larger reference data sets 

representing explicitly described sub-populations, e.g., as defined in the QIBA Profile clinical 

context for use statement.  Additionally, the procedure used here may be suited for use as a 

means by which compliance of analysis software may be rigorously determined and reported. 
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Our study has limitations. One stems from the fact that definitions of fully- versus semi-

automated algorithm processing evolved during the course of the study and as such more 

rigorous investigation of differing categories have been suggested.  Another limitation stems 

from an explicit determination for this study that workflow not be constrained, but the related 1B 

study suggests its importance.  We had determined that automatic algorithms would not differ in 

their performance based on workflow, but found that this does not always hold true.  

Additionally, the data used in this study were relatively limited.  Although the data was 

contained an assortment of clinical cases, it did not fully represent the claimed clinical context of 

use for the corresponding QIBA Profile. Definitive reference data sets that adequately represent 

the target patient population according to formally assessed statistical criteria should include 

patients representing a range of common co-morbidities, disease characteristics, and imaging 

settings (e.g. sedated vs. non-sedated patients).  Finally, the manner in which these tests are run 

and the data collected has implications regarding the interpretation and use of metrics computed 

and reported.  For example, execution of these tests by a trusted third-party on sequestered data 

sets may increase their utility. 
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VII. APPENDIX: ALGORITHM DESCRIPTIONS 

Twelve groups participated in the challenge by submitting volume readings and five submitted 

segmentation objects, four of which were compatible for analysis. Algorithms from each group 

are described below.   

Participant Description / Workflow 

Group02 (volume readings and 

segmentation objects
1
) 

Moderate image/boundary 

modification (on less than 50% of 

the tumors) 

Volumetric analysis was determined using a segmentation approach employing a Z‐score on the highest 

conspicuity post‐contrast volumetric image set.  

A cylinder is placed around the highest conspicuity slice and around all slices above and below this slice in which 

the tumor is seen.  

A kernel defined within the region of interest (ROI) is then propagated to other slices using connectivity 

algorithms. The search is constrained by the predefined cylinder to accelerate the search algorithm. 

Group03 (volume readings and 

segmentation objects) 

Fully automatic 

One-click user-seeded segmentation.  

Utilizes shape and boundary information to delineate the tumor.  

The workflow for segmenting lung tumors involves a single click at a seed-point roughly centered in the tumor.   

The algorithm uses the seed point in combination with a thresholded ROI in order to extract the most probable 

shape of the tumor. 

Group04 (volume readings and 

segmentation objects) 

Automated and semi-automated: 

limited image/boundary 

modification (on less than 15% of 

the tumors) 

Utilize a trained non-radiologist technician and trained radiologist.  

As the images would be of chest and the tumors would be in lung parenchyma, all the volume assessment were 

made using a fixed lung window/level display setting of 200HU (window) and -1400HU (level). 

Trained non-radiologist opens the images in and uses the tumor location to identify the tumors on images. 

Trained non-radiologist outlines/ROIs of the identified tumors using automated segmentation tools. 

Trained non-radiologist evaluates the quality of the segmentation and adjusts outlines with additional semi-

automated tools as necessary. 

Finally, that image data is submitted to trained radiologist for final assessment of outlines/ROIs. The trained 

radiologist evaluates the quality of the segmentation and adjusts outlines with automated & semi-automated tools 

as necessary. 

Once trained radiologist is satisfied with all the outlines/ROIs of the respective tumors, the automated volume 

assessment tool is used to calculate volume as volume = (Image Position Interval1 * Area1) + (Image Position 

Interval2 * Area2)...+...+ (Image Position Interval n * Area n). 

The images with ROI is processed, re-colored and converted in to .nii file. 

Group05 (volume readings) 

Semi-automatic; Moderate 

parameter adjustment (on less 

than 50% of the tumors).   

Modelization of the heat-flow between the inside and outside of the tumor.  Based on intensity gradients, in 3D. 

User clicks on a tumor, or draws a diameter joining the boundaries of the tumor => software computes a 

segmentation of the tumor, and displays its contours. 

User can then refine the segmentation by the means of a slider => software adjusts the segmentation accordingly, 

and displays in real-time the new contours. 

If needed, user can manually edit any contour by drawing it. 

User finally validates the segmentation => software “locks” the segmentation and extracts the statistics: volume, 

long axis, short axis, and all intensity-based numbers (average value, standard deviation, etc.) 

Group06 (volume readings) 

Fully automatic; (uses only seed 

points and ROI information) 

This algorithm combines the image analysis techniques of region-based active contours and level set approach in 

a unique way to measure tumor volumes. It may also detect volume changes in part solid and Ground Glass 

Opacity tumors. 

The user clicks and drags to define an elliptical/circle ROI to initiate the segmentation.  

                                                 

1
 Alignment issues prevented inclusion in the segmentation object analysis. 
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Participant Description / Workflow 

The computer then carries out the segmentation, and tumor measurements are saved.   

The algorithm is an edge-based segmentation method that uniquely combines the image processing techniques of 

marker-controlled watershed and active contours.  

An operator initializes the algorithm by manually drawing a region-of-interest encompassing the tumor on a single 

slice and then the watershed method generates an initial surface of the tumor in three dimensions, which is 

refined by the active contours.  

The volume, maximum diameter and maximum perpendicular diameter of a segmented tumor are then calculated 

automatically. 

Group07 (volume readings) 

Fully automatic; (uses only seed 

points and ROI information) 

An initialization sphere is drawn from the center of the mass, on the slice with its largest extents, such that it 

covers the entire extent of the mass. The user determines the center and radius in a single click-drag action, and 

this initialization circle imposes hard constraints on the maximum extents of the three dimensional segmentation. 

The employed segmentation tool is part of a commercial software package for multimodal oncology treatment 

assessment and review. Thus the workflow mimics the typical workflow a user has with this tool: 

Select the desired CT data set and load it into any review mode 

Select the lung window-level setting 

Navigate to the tumor center using the pixel and slice locations from the MSKCC Coffee Break study 

Locate the slice where the tumor has the greatest extents 

Select the segmentation tool, and initialize the segmentation by clicking in the approximate center of the mass and 

dragging the mouse to set the radius of the spherical region of interest. 

The spherical region of interest contains a fixed inner sphere and the outside sphere which is set by the mouse 

dragging motion. The radius is chosen such that the inner circle encompasses most of the mass to be segmented, 

and the outer sphere can be used as a constraint to prevent any leakage into the chest wall or heart if the mass is 

attached/abducting to these organs. 

The computation takes a few seconds (single digit numbers) to compute the result.  User may retry the 

segmentation a few times if the result is unsatisfactory. With each try the previous result is erased, and does not 

influence the result of preceding try. In this experiment, the user has in overall three tries to get a satisfactorily 

result. 

Once the segmentation has been determined, the user reads off the volume from the region statistics, which are 

automatically computed and displayed as soon as the segmentation has been defined. (The volume estimation 

algorithm counts all voxels whose centroid lies within the segmented contour and multiplies this number with voxel 

volume) 

To document the segmentation result, save the segmentation as a RT-structure set to the data repository. 

Group08 (volume readings and 

segmentation objects) 

Semi-automatic; Moderate 

parameter adjustment (on less 

than 50% of the tumors) 

Semi-automatic segmentation based on thresholds, growing region and mathematical morphology processing 

DICOM images are downloaded and imported into a database. Image data are converted to a proprietary 

optimized format before the insertion into the database. Tumors coordinate are downloaded and reformatted by 

our data manager. Relying on a proprietary Validation Framework System, landmarks are automatically inserted 

into the database. 

The software is allowed then to display the repeated images side by side with the correct landmarks identifying 

the tumors to segment. The first repetition was edited as a single image. The side-by-side displayed was available 

only for the repetition when the first scan edit was locked.   

Three reviewers are involved, each in charge of segmenting approximately a third of the dataset. The data 

manager made available to the reviewers a commercial semi-automated segmentation tool dedicated to Lung 

tumors. Another manual tool can be enabled if semi-automatic segmentations were not fully satisfactory. The data 

manager recommended using different window level to better assess tumors boundary, pulmonary window level 

being the major window level to refer to. The data manager recommended correcting semi-automated 

segmentation as long as the segmentation was not fully satisfactory. Once the whole dataset segmented, an 

additional reviewer was involved to check the whole coherency of the measurements: Total number of tumors, no 

obvious incoherency, correct recording of the data, etc. 

A complete report was extracted. The same Validation Framework System allowed automatic extraction of tumors 

mask as .mhd format. A third party software as SLICER was used to convert masks to NIFTI format. 

Group11 (volume readings) 

Fully automatic (uses only seed 

points and ROI information) 

Method is completely automatic and consists of three steps.  First, a region of interest is extracted and the tumor 

is classified as solid or subsolid.  In the second step, a binary segmentation mask is computed by an algorithm 

based on thresholding and morphological postprocessing, using slightly different procedures for the two classes.  

Finally, the volume of the tumor is determined by adaptive volume averaging correction. 
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Participant Description / Workflow 

Preprocessing: a stroke is generated from the given center and bounding box by shortening the bounding box 

diameter to 40%. 

The segmentation is performed in a cubic region of interest (ROI), whose edge length is twice the stroke length. 

The ROI is smoothed with a 3 x 3 Gaussian filter and resampled to isotropic voxels and a maximum size of 100 x 

100 x 100 voxels.  For detecting the tumor type, the local maximum in a 5 x 5 x 5 neighborhood of the ROI center 

is identified. If its value is greater than -475 HU, the tumor is treated as solid, otherwise as subsolid. 

The ROI center is used as a seed point for region growing. The lower threshold is derived from the 55% quantile 

of the histogram of the dilated stroke by applying an optimal elliptic function yielding values between -780 and -

450 HU. The resulting mask contains the complete tumor, but may also leak into adjacent vasculature or, in case 

of juxtapleural tumors, into structures outside the lungs.  

In order to remove vessels, an adaptive opening is applied, where the erosion threshold is chosen such that the 

segmentation has no connection to the ROI boundary anymore. A slight overdilation allows a final refinement of 

the mask.   In order to avoid leakage outside the lungs, a convex hull of the lung parenchyma is computed within a 

minimal elliptical region that is fitted to the shape of the tumor. The convex hull is then used as a blocker for the 

segmentation. 

Due to the limited spatial resolution of CT and partial volume effects, the volume of a segmented tumor cannot be 

determined exactly by voxel counting. Instead, voxels in a tube around the segmentation boundary are weighted 

according to their estimated contribution to the tumor volume. The weight depends on the relation of a voxel's 

value to the typical tumor and parenchyma densities. 

Group12 (volume readings) 

One with interactive correction - 

moderate image/ boundary 

modification (on less than 50% of 

the tumors) 

We start with an automatic method (submitted Group11) and correct results interactively if necessary. The user 

draws partial contours which are included in the segmentation in the edited slice.  Additionally, the correction is 

automatically propagated to a set of neighboring slices by sampling the contour, matching points to the next slice 

and connecting them with a live-wire method. 

Interactive correction: Our interactive correction tool provides an efficient way to fix segmentation results which 

are mostly correct but need some refinement. The user draws partial contours indicating the desired 

segmentations which are then automatically propagated into 3d. Seed points calculated from the user contour are 

moved to adjacent slices by a block matching algorithm and the seed points are connected by a live-wire 

algorithm. Details can be found in our paper {reference provided separately}.  For the submission, correction was 

performed by two experienced developers in consensus. 

Volumetry: The volumetry used for automatic results is integrated in the segmentation algorithm. To ensure 

consistency after interactive correction, the change in the number of voxels is computed and multiplied with the 

(partial-volume-corrected) volume of the initial result. 

Group14 (volume readings) 

Fully automatic (uses only seed 

points and ROI information) 

The system is fully automated after manual input of an approximate bounding box for the tumor of interest. Within 

the bounding box, the system automatically processes the images in 3 stages-preprocessing, initial segmentation, 

and 3D level-set segmentation.  

In the first stage, a set of smoothed images and a set of gradient images are obtained by applying 3D 

preprocessing techniques to the original CT images. Smoothing, anisotropic diffusion, gradient filtering, and rank 

transform of the gradient magnitude are used to obtain a set of edge images.  

In the second stage, based on attenuation, gradient, and location, a subset of pixels is selected, which are 

relatively close to the center of the tumor and belong to smooth (low gradient) areas. The pixels are selected 

within an ellipsoid that has axis lengths one-half of those of the inscribed ellipsoid within the bounding box. This 

subset of pixels is considered to be a statistical sample of the full population of pixels in the tumor. The mean and 

SD of the intensity values of the pixels belonging to the subset are calculated. The preliminary tumor contour is 

obtained after thresholding and includes the set of pixels falling within 3 SDs of the mean and with values above 

the fixed background threshold. A morphologic dilation filter, a 3D flood fill algorithm, and a morphologic erosion 

filter are applied to the contour to connect the nearby components and extract an initial segmentation surface. The 

size of the ellipsoid and the remaining parameters are selected experimentally in a way that enables segmentation 

of a variety of tumors, including necrotic tumors. 

In the third stage, the initial segmentation surface is propagated by using a 3D level-set method. Four level sets 

are applied sequentially to the initial contour. The first three level sets are applied in 3D with a predefined 

schedule of parameters, and the last level set is applied in 2D to every section of the resulting 3D segmentation to 

obtain the final contour. The first level set slightly expands and smooths the initial contour. The second level set 

pulls the contour toward the sharp edges, but at the same time, it expands slightly in regions of low gradient. The 

third level set further draws the contour toward the sharp edges. The 2D level set performs final refinement of the 

segmented contour on every section. 

Group15 (volume readings) 

Moderate image/boundary 

modification (on less than 50% of 

The  software used is essentially a semi-automated contouring method.  The user clicks on a voxel located inside 

the tumor of interest and then drag a line to the outside of the tumor (to the background).  

The voxels along that line are sampled and a histogram of intensities (Hounsfield Units) is created.  
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Participant Description / Workflow 

the tumors) A statistical method is employed to determine the threshold that best separates the two distributions (tumor and 

background) in that histogram.  

Once that threshold is determined, the software employs a 3-D (or if selected a 2-D) seeded region growing using 

the initial voxel selected as the point inside the tumor and the threshold determined from the histogram analysis.  

The tool also provides several user editing tools such as adding and erasing voxels from the contour, etc. The 

workflow description: 

Each contour is automatically stored in a database linked to the experiment along with meta data such as patient 

id, contouring individual’s id, etc. Each contoured object has a unique id that is linked to the series uid to maintain 

its identity.  

Once the contour is completed and accepted, the volume of the contoured object is calculated. This is done 

essentially by counting the number of voxels within the boundaries of the contoured object and multiplying that by 

the voxel size (as derived from DICOM header data). 

Group16 (volume readings and 

segmentation objects
2
) 

Limited image; boundary 

modification (on less than 50% of 

the tumors) 

As the input for the algorithm, the user has to draw a stroke being favorably the largest diameter in the axial 

orientation or click a point in the given lung tumor.  Usually, the decision to use a stroke or a single click point 

depends on the size of the tumor to be segmented (for bigger tumors, a stroke is preferable, while for small 

tumors, a single click is sufficient). 

In the next step, a Volume of Interest (VOI) around the tumor is estimated.  In the case where the algorithm has 

been initialized with stroke, the size of the VOI depends on the length of the stroke. 

3D region growing is conducted in a VOI starting from seeds generated along the stroke or around the click point, 

depending on the initialization.   

Adjacent structures of similar density (pleura, vessels) are separated by a set of interchanging morphological 

operations (erosion, dilation, convex hull and binary combination with region growing mask.)   

Finally, a plausibility check between the resulting segmentation mask and the position of the initial stroke or click 

point is conducted.  If necessary, initial thresholds are re-adjusted and the whole procedure (steps 2-5) is 

repeated.   

For the case when the semi-automatic results are not satisfactory, the software provides the possibility of 

correcting the results by drawing contours in selected slices and then propagating the contours in an automatic 

manner onto the whole 3D segmentation.  The algorithm performs best optimally for the resolution up to 2 mm, 

though it still works reasonably well for thicker slices such as 5 mm. 

  

Three groups (Group01, Group9, and Group13) initially applied but did not submit results. 

                                                 

2
 Segmentation objects submitted under Group10 ID. 
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