#### Elastography Phantoms Based on Hydrogels from Agar, Gelatin and Their Mixtures

Timothy J Hall Medical Physics Department University of Wisconsin

> 2012.Aug.6 QIBA Ultrasound

#### Outline

- What are Agar and Gelatin
  - Basis for many commercial ultrasound phantoms
- Compressional wave properties
- Multi-modality properties
- Visco-elastic properties
  - Elastic properties
  - Viscous loss properties
  - Temporal stability
    - Long-term storage
  - Reproducibility

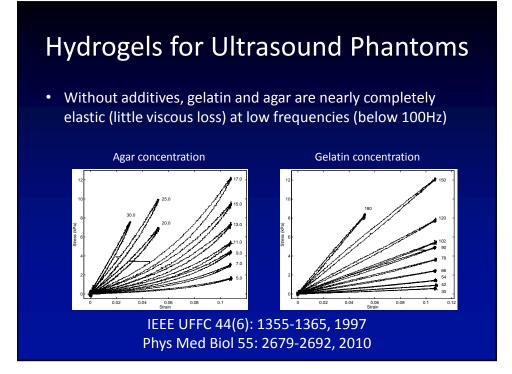
#### Agar (aka agar-agar)

- A gelatinous derivative from red algae
  - Mostly a linear polysaccharide agarose
  - Also a mixture of small molecules (agaropectin)
- Melts at 85°C; congeals at 32-40°C
- Gelatin
  - Derived from collagen
    - Generally boiling and drying animal hides
  - Commonly used in foods
    - Jello, marshmallows, some yogurt, jellybeans, etc.
  - Melting and congealing temperatures depends on molecular length
    - Below 37°C without additives

- There is a long history demonstrating utility of agar- and gelatin-based hydrogels in ultrasound phantoms
  - Medical Physics 5(5):391-394, 1978
  - IEEE Trans Nuc Sci NS-27(3): 1176-1182, 1980
  - Radiology 134:517-520, 1980
  - Medical Physics 7(1): 43-50, 1980
  - Medical Physics 9(5): 703-710, 1982
  - Ultrasound Med Biol 8(3): 277-287, 1982
  - Ultrasound Med Biol 8(4): 381-392, 1982
  - J Clin Ultrasound 10(3): 91-100, 1982
  - Medical Physics 9(6): 848-855, 1982
  - Ultrasonic Imaging 6(3): 342-347, 1984
  - Medical Physics 17(3): 380-390, 1990
  - Ultrasound Med Biol 25(5): 831-838, 1999
  - Many more...

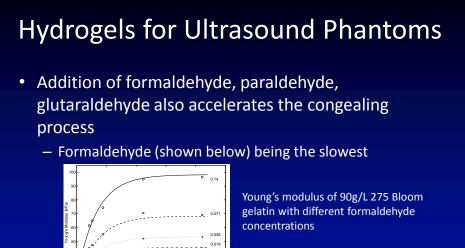
- These materials can be manufactured to have a wide range of acoustic properties
- Nearly independent control over attenuation, sound speed, scattering properties
  - Attenuation:
    - Magnitude ~0.1—1.5dB/cm-MHz
    - Frequency dependence  $f^1 f^{1.5}$
  - Sound speed ~1450—1700m/s
  - B/A (mimic the range of soft tissues)
  - Scattering properties: "you name it"

- Specifically, there is even a paper that reports the use of these materials to mimic the acoustic properties of liver
  - Medical Physics 9(5): 703-710, 1982
- For elasticity imaging applications, this level of mimicking likely isn't necessary


- These materials can also be used for multimodality phantoms
  - X-ray
    - Radiology 142(30):755 -757, 1982
  - Microwave
    - Phys Med Biol 50(18): 4245-4258, 2005
  - MRI
    - Medical Physics 12(4): 516-516, 1985
    - Medical Physics 25(7): 1145-1156, 1998
    - Neurosurg 45(6): 1423-1429, 1999



- We have LOTS of experience with these materials. We know:
  - Agar doesn't bond to agar
  - Agar doesn't bond to gelatin
  - Gelatin DOES bond to gelatin
    - Its basically animal hide glue (which bonds to itself)!


- We have LOTS of experience with these materials. We know:
  - Young's modulus is proportional to (roughly) the square of the gel concentration
  - For 0-30% strain, stress-strain is linear in gelatin and nonlinear in agar

IEEE UFFC 44(6): 1355-1365, 1997 Phys Med Biol 55: 2679-2692, 2010



- With additives (i.e., formaldehyde, paraldehyde, glutaraldehyde) the melting point of gelatin is raised well above 50°C
- These additives also provide one of many mechanisms for controlling the modulus of the gel

IEEE UFFC 44(6): 1355-1365, 1997



Stiffness v. time is predictable

#### IEEE UFFC 44(6): 1355-1365, 1997



- Simple materials have been shown to be highly reproducible
  - About 5% standard deviation in elastic moduli among sets of 5 samples manufactured independently

IEEE UFFC 44(6): 1355-1365, 1997



- Mixtures of agar and gelatin have nonlinear elastic properties and components bond to each other
  - Gelatin in the mixture bonds to gelatin of the other component part (targets in a background)

Phys Med Biol 55:2679-2692, 2010 Phys Med Biol 57(15):4787-4804, 2012

- Dispersions of oil droplets in agar, gelatin or agar-gelatin mixtures
  - Lower elastic modulus
  - Lower sound speed
  - Mimic fatty tissues

Ultrasonic Imaging 25: 17-38, 2003 Ultrasound Med Biol 32(2): 261-270, 2006 Ultrasound Med Biol 32(6): 857-874, 2006 Phys Med Biol 55:2679-2692, 2010 Phys Med Biol 57(15):4787-4804, 2012

- Acoustic and elastic properties of these materials are (macroscopically) uniform throughout
  - To the extent that we've been able to measure them
    - Expect wave propagation phenomena to change within a wavelength of a boundary!

- Elastic properties of composite phantoms are predictable based on the independently measured elastic properties of component materials
  - Contrast in strain images is predictable within about 2dB for hyperelastic deformations of nonlinear elastic media

Phys Med Biol 57(15):4787-4804, 2012

- All the materials described so far in this presentation are essentially lossless
  - Nearly completely elastic
  - Nondispersive
- Many tissues (including liver) exhibit viscous loss

## **Modeling Complex Mechanics**

The complex shear wave number k:

 $k = (2\pi f)(\rho_o/G)^{1/2} = 2\pi f/c_s - i\alpha$ 

 $G \equiv$  complex shear modulus at frequency f  $G \equiv G' + iG''$ 

--  $G' \equiv$  shear storage modulus

--  $G'' \equiv$  shear loss modulus

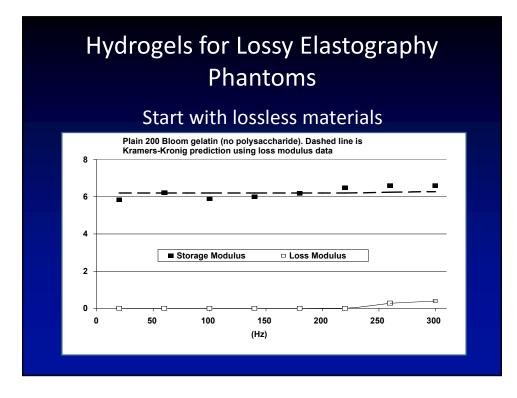
 $\rho_{\text{o}} \equiv \text{mass density}$ 

- c<sub>s</sub> = shear wave speed (frequency dependent)
- $\alpha$  = shear wave attenuation constant

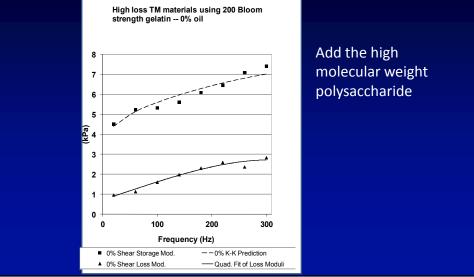


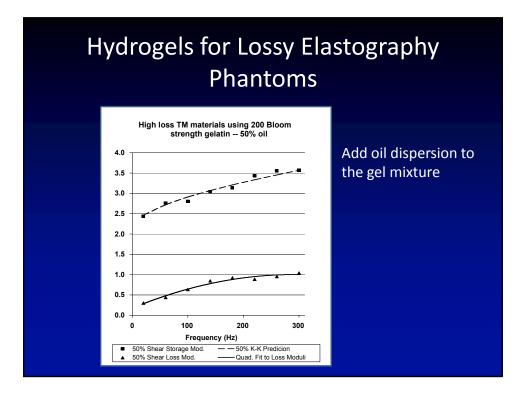
- loss factor = tan  $\delta$  = G"/G'
  - where  $\boldsymbol{\delta}$  is the angle by which displacement lags shear force
- G" and tan  $\delta$  can be substantial in soft tissues:
  - Klatt, et al: G'  $\approx$  2-3kPa and tan  $\delta$   $\approx$  0.35 in normal in vivo liver tissue at 25-62Hz
  - Sinkus et al: G'  $\approx$  1kPa and tan  $\delta$   $\approx$  0.25 in normal in vivo breast tissue at 65Hz
  - Arbogast and Margulies: G'  $\approx$  1.5kPa and tan  $\delta$  perhaps 0.5 in *in vitro* porcine brainstem

| TRADE-OFF BETWEEN RESOLUTION AND ATTENUATION |
|----------------------------------------------|
|----------------------------------------------|

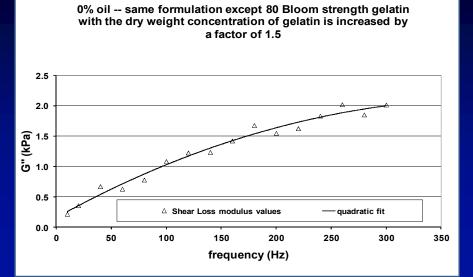

| Freq. | Storage  |             | s factor              | Loss factor |                       |  |
|-------|----------|-------------|-----------------------|-------------|-----------------------|--|
| (Hz)  | modulus  | G"/G' = 1/4 |                       | G"/G' = 1/2 |                       |  |
|       | G' (kPa) | λ (cm)      | x <sub>1/e</sub> (cm) | λ (cm)      | x <sub>1/e</sub> (cm) |  |
| 50    | 1        | 2.0         | 2.6                   | 2.2         | 1.5                   |  |
| 100   | 2        | 1.4         | 1.9                   | 1.5         | 1.0                   |  |
| 200   | 3        | 0.89        | 1.15                  | 0.94        | 0.63                  |  |
| 300   | 4        | 0.68        | 0.88                  | 0.72        | 0.49                  |  |

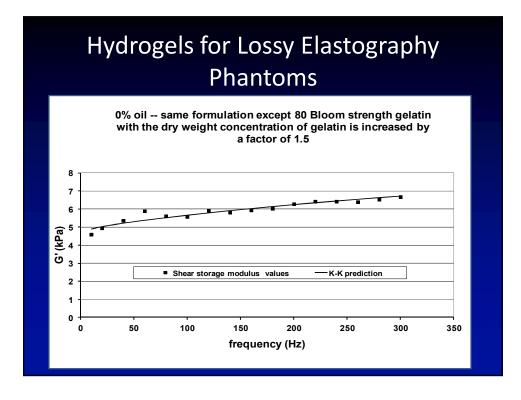
#### Hydrogels for Lossy Elastography Phantoms


- Start with Low loss tissue-mimicking (TM) materials
  - Ultrasound Med & Biol vol. 32, 2006
- Add a high molecular weight polysaccharide to produce high loss
  - Others have tried this also
    - Gallippi, et al.
- Measure complex shear moduli with instrument to be described later (next meeting?)

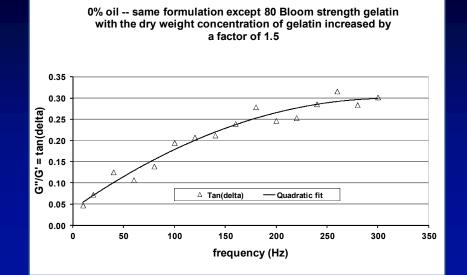

#### Hydrogels for Lossy Elastography Phantoms

- Verify plausible results using Kramers-Kronig relations
  - Mathematical relationship between real and imaginary parts of any physically-realizable system
  - Allows prediction of one part (e.g. the Real part) from knowledge of the other (Imaginary) part
- Again, more on this later (next meeting?)





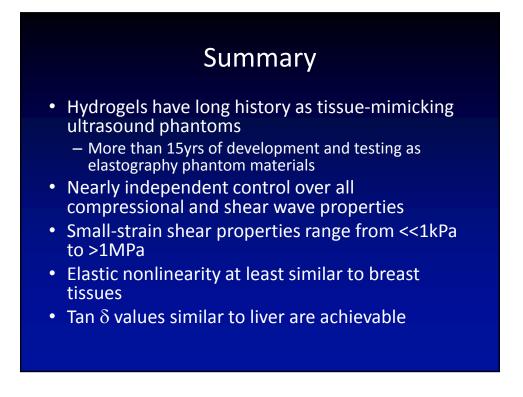












| Hydrogels for Lossy Elastography<br>Phantoms |                        |                        |                   |                                    |         |         |         |  |  |  |  |
|----------------------------------------------|------------------------|------------------------|-------------------|------------------------------------|---------|---------|---------|--|--|--|--|
| US and NMR properties at 22°C                |                        |                        |                   |                                    |         |         |         |  |  |  |  |
| TM Material identity                         | T <sub>1</sub><br>(ms) | T <sub>2</sub><br>(ms) | US speed<br>(m/s) | US atten. coeff.÷freq. (dB/cm/MHz) |         |         |         |  |  |  |  |
|                                              |                        |                        |                   | 2.5 MHz                            | 4.5 MHz | 6.0 MHz | 8.0 MHz |  |  |  |  |
| 0% oil                                       | 161                    | 34                     | 1662              | 0.46                               | 0.47    | 0.47    | 0.52    |  |  |  |  |
| 50% oil                                      | 174                    | 52                     | 1542              | 0.59                               | 0.76    | 1.02    | 1.36    |  |  |  |  |
| 70% oil                                      | 178                    | 61                     | 1507              | 0.62                               | 0.67    | 0.74    | 0.83    |  |  |  |  |
|                                              |                        |                        |                   |                                    |         |         |         |  |  |  |  |

15

#### • Storage

- Agar phantoms can be stored for MANY years in water-alcohol solution
- Gelatin will swell if stored in a water-alcohol bath
- Gelatin phantoms seem most stable when stored in an oil bath
  - Mineral oil is a good choice
  - Long-term stability depends on composition

     Months of stability, at least



# Summary

- Phantom material development still underway
- Active area of research in our lab
- Many variables to investigate
  - Polysaccharide type
  - Gel component concentrations
  - Cross linking agent (e.g. formaldehyde) concentration
- Long-term stability needs to be documented