BOLD fMRI – Establishing A More Quantitative Approach for Clinical Application

Edgar DeYoe¹, PhD (co-chair, fMRI Tech. Ctte.), James Voyvodic², PhD, Jay Pillai³, MD, Domenico Zaca³, PhD, Cathy Elsinger⁴, PhD (co-chair, fMRI Tech. Ctte.), Feroze Mohamed⁵, PhD, Harris Ahmad, MD⁶ ¹Medical College of Wisconsin, ²Duke University, ³Johns Hopkins School of Medicine, ⁴NordicNeuroLab, ⁵Temple University, ⁶BioClinica, Inc.

BOLD fMRI as a Quantitative Biomarker

In the clinical context of image-guided neurosurgery, BOLD fMRI is used to map brain regions that are responsive to sensory, motor or language tasks and at risk if in proximity to planned resection sites. In this context, quantitative measures of the spatial location and extent of BOLD foci are of prime interest. To establish a claim that BOLD fMRI provides such quantitative information, we have

developed metrics for spatial location, extent and hemispheric lateralization and examined several factors that affect reproducibility or validity of BOLD imaging metrics. Results from 3 QIBA-funded projects are described. These results motivate ongoing efforts to characterize and control sources of variance in the BOLD technique and set the stage for completion of a QIBA profile for BOLD fMRI.

BOLD fMRI is Reproducible

A key issue for the clinical use of BOLD fMRI to guide brain surgery is the consistency of brain maps evoked by sensory, motor or language tasks. Results from two QIBA-funded subprojects indicate that the weighted center of mass of motor-, vision-, and language-related activation foci are reproducible to within 5 mm within the same patient across days. Repeatability is enhanced by use of a local, statistical normalization procedure described by Voyvodic^{1,2}. The mean number of voxels in such repeated foci are repeatable to within 30% without normalization and within 20% with normalization, though this can vary with task (eg. language vs vision). A lateralization index comparing the number of voxels in left vs right hemisphere language activations is reproducible to better than 90%.

BOLD Reproducibility with AMPLE Normalization

A) Comparison of fixed-threshold tmaps versus AMPLE maps as a function of scan duration for a hand motor fMRI scan,

B) Similar hand motor comparison for a single subject scanned 5 times under different acquisition conditions

Sentence Reading Language Mapping

Comparison of fixed-threshold t-maps versus AMPLE maps for a single subject scanned 6 times under different conditions. Frontal and temporoparietal language activations are shown.

Conclusion: AMPLE normalization improves reproducibility.

BOLD Reproducibility Metrics – Vision Mapping

Reproducibility of weighted center-of-mass and # active voxels for visual cortex activation across a range of statistical threshold settings for conventional T-valued data and AMPLE normalized data for both within-day and across-day repeated measurements. At very high statistical thresholds, patterns become sparse and less reproducible.

Factors Affecting Reproducibility

Language mapping reproducibility

fMRI quantitative reproducibility metrics were compared as a function of magnetic field strength, pulse sequence, mean t-value, raw BOLD signal amplitude, head motion, days between scan sessions, sex, and age to see which parameters were correlated with reproducibility. (Data not normalized.)

Reproducibility of Peak Location varied with changes in acquisition method.

Reproducibility of Spatial Extent varied with overall amplitude of BOLD signals.

Graphs show the averaged reproducibility metrics calculated from all test-releat pairing combinations of AMPLE-masked t-maps (b4 and AMPLEx60%) for 12 subjects. Peak location **40**/Ctri is the average distance (mm) between activation-weighted peak locations. Spatial extent **NVose)**, a percent agreement between test-releap **Fars**. Left graph compares metrics as a function of the similarity in scanner and pulse-sequence used in the 2 scans in the pair; All scans⁺ any combination of scanner (1.51, 31A, 31B, or 41) and pulse sequence (linear EPI or spin). Scanse Scanner; Obio scans performed on the same scanner using any pulse sequence. unterest cr-1 e spine), contre oculater = coors scats performe on the same scanner using any pues sequences, "Same PubliceSeq" = performed on any text scanner but both greaters and publiceSeq" = choice scatters but both greaters are publice sequence. Right graph compares metrics as a function of overall t-value amplitude of th scans herdon scans in each text-relates pair, t-value amplitude vert scatters as a function of overall t-value amplitude vert scatters as a function of overall t-value amplitude vert scatters as a function of overall t-value amplitude of an scans in each text-relates pair, t-value amplitude vert scatters as a function of the pair t-value amplitude of the scans in each text-relates pair, t-value amplitude vert scatters as the variage of the pair t-value of the 2 scans, averaged in 3 g "Low" (peak t-values < 9.0), 'Medium' (9.0 < t-value < 14.0), and 'High' (t-value > 14.0).

Conclusion: Standardized acquisition is important; overall strength of activation is best predictor of reproducibility.

Data Qualification: NVU

NeuroVascular Uncoupling (NVU) appears as a reduced or absent BOLD fMRI signal despite robust neuronal activation to a stimulus or task. NVU can produce "false negatives" in fMRI brain maps thereby increasing the potential for inadvertent resection of "BOLD-silent" but eloquent cortex and subsequent postoperative neurological deficits. Breath-hold (BH) cardiovascular reactivity mapping is superior to T2* DSC perfusion mapping for detection of NVU potential in brain tumors of various grades.³

Here we demonstrate enhancement of ipsilesional motor activation in expected regions of primary motor cortex using a modified version of a calibration algorithm by Thomason et al.4

> $t_{calib} = t_{meas} \left(1 - x + x \frac{S_{BH} - CL}{2}\right)$ S_{BH} 1 if tmeas thr AND Spar>0.5*Spar

Calibration Enhanced fMRI

Patient with frontal lobe glioma. Arrows indicate zone of undetectable activation before calibration and newly detectable activation after calibration of fMRI, hand motor activation maps.

Literature cited
Vivyovdc 17 (2006). Activation mapping as percentage of local excitation (AMPLE): MRI stability within scans, between scans, and across field strengths,
Magnetic Resonance Imaging, 24:1248-1281.
Vivyovdc 17 (2012). Reproducibility of single-subject fMRI language mapping with AMPLE normalization, J. Mag. Res. Imaging, 36:569-30.
PMIII J and Zasa D (2012). Technol. Cancer Res Treat (PIIII J. J. Zasa D. Comparison of BOLD Cerebrowascular Reactivity Mapping and DSC MR Perfusion
Imaging of Prediction of Neurowscular Uncoupling Potential in Rein Turnos. Technol Cancer Res Treat, 11(4):361-74.
Phometon ME, Tokon LC, Glover of L2007). Catholication of BOLD DMI using present hoding reduces group watance during a cognitive task. Hum Brain Mapp 28(1):59-68.

Various OIRA projects and activities have been funded in whole or in part with Federal funds from the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN268201000050

Quantitative: imaging

Biomarkers

