QIBA PET Amyloid BC March 11, 2016 - Agenda

1. QIBA Round 6 Funding
a. Deadlines
b. What projects can be funded, what cannot
c. Discussion of projects

- Mechanical phantom and DRO - Paul \& John ?
- Any Profile gaps left to fill with a project?

2. QIBA Round 5 Project awarded to Dawn: subject motion
3. Status of Profile feedback
a. Next steps

Round 6 Funding Details

- Project proposal due April 15th
- Send to RSNA Staff: qiba@rsna.org
- Funding cannot support human studies
- Note new focus - for all Round-6 projects:
- All projects must support the NIBIB contract objectives
- Support the completion/advancement of a Profile and/or conformance procedures/checklists.
- BC leadership are charged with approving preliminary projects.
- Final selection in July

Project Ideas

- Continue work on DRO and Phantom (Paul and John)
- Current knowledge gaps in Profile
- Tracer uptake time differential between measurement time points
- Acceptable level of difference
- Ronald Boellaard will develop a draft project
- Dr. Vanderhayden will support, perhaps radiopharm vendors?
- Conformance testing project
- Sites, scanner vendors, analysis vendors
- Reader variability project
- Scanner/reconstruction harmonization project
- Ex: PET/CT scanner model is changed, is there a way to harmonize the SUVR values between the old and new scanners?

Quantitative Imaging Biomarkers and Alliance

QIBA Round 5 Funding

Analyses to Support Amyloid Imaging Profile Development:
Quantify the Effect of Misalignment and Subject Motion

Anne M. Smith, PhD technical Support Siemens M olecular Imaging

Dawn M atthews Principal Investigator

ADM dx

Quantitative Imaging Biomarker Alliance - QIBA

Profile Gaps We Want to Fill With This Work

- Characterize the effect of patient motion on SUVRs
- How significant is movement between CT and PET acquisitions
- How significant is movement during PET acquisitions
- M ake recommendations for "how much is too much" motion
- Does the distribution of an 18-F amyloid tracer matter
- (If time) Effect of PET image reconstruction algorithm on SUVRs
- Determine if significant differences for these algorithms

Project
Workhorse

- Reconstructed voxel size $1 \mathrm{~mm} \times 1 \mathrm{~mm} \times 2 \mathrm{~mm}$ (zoom=2)
- OSEM 3D (2i24s, 5 mm Gaussian)
- OSEM 3D + TOF (2i21s, 5 mm Gaussian)
- OSEM 3D + PSF (3i24s, 5 mm Gaussian)
- OSEM 3D + TOF +PSF (2i21s, 5 mm Gaussian)

PET/ CT Scanner

- Siemens mCT 4 Ring Scanner
- 22.1 cm axial FOV
- 70 cm transaxial FOV
- 4.1 nsec coincidence window
- $\leq 12 \%$ FWHM Energy Resolution
- 540 psec TOF
- 33\% scatter fraction @ low act
- 10.2 cps/kBq Sensitivity
- NEM A Pt Source FWHM Resolution

400×400 (2mmx2mmx2mm)	@ 1 cm	@ 10 cm
Transaxial	4.5 mm	5.2 mm
Axial	4.7 mm	6.1 mm

PET/ CT Amyloid Data

- Avid Florbetapir Clinical Trial at University of Tennessee Medical Center
- Selected three datasets with minimal motion/misalignment
- Healthy Control, amnestic MCl , early AD
- 10 mCi of Florbetapir injected with 50 min uptake time
- 120 kVp 50 mAs non-diagnostic quality CT acquired, with Care Dose
- Used for PET attenuation and scatter corrections
- 30 cm transaxial FOV
- Subject's head secured with a bean bag Vac bag
- PET data
- Single bed position
- 10 minute listmode acquisition
- Reconstruction
- 400×400 matrix
- M atched axial slices of CT volume
- Reconstructed voxel size $1 \mathrm{~mm} \times 1 \mathrm{~mm} \times 2 \mathrm{~mm}$ (zoom=2)
- Multiple recon algorithms/parameters used (previous slide)

Topogram - Patient Prep \& Scan Planning

Healthy Control (HC)

- Female
- 75 years old
- 73 kg
- 55 min uptake

Amnestic MCl (aMCI)

- Male
- 78 years old
- 80 kg
- 52 min uptake

Early Alzheimer's (eAD)

- Male
- 71 years old
- 84 kg
- 54 min uptake

Assess for Subject M otion and CT-PET M isalignment

HC

Assess for Subject M otion and CT-PET M isalignment

aMCl

Assess for Subject M otion and CT-PET M isalignment

Static PET/ CT Images

Test scans - ADM dx

Dynamic PET Images - 1 minute frames

Effect of Reconstruction Algorithm

Remove Head Holder From mu-M ap

Simulate Patient M otion and CT-PET M isalignment

Misalign mu-Map

- Recon static PET
- Simulates movement between CT and PET

Subject motion - example from late MCI to mild AD scans

SPM corrections needed to re-align images, using a neurological or right-handed coordinate system

Average across all frames, referenced to frame 1 of each scan

However, depending upon the site and disease severity, subject motion can be as great as $\mathbf{1}$ to $\mathbf{2 c m}$ and/ or many degrees. Study motion typically spans a greater range with greater disease severity (e.g. moderate AD, FTD).

Subject motion - example from 140 late MCI to mild AD scans

SPM corrections needed to re-align images, using a neurological or right-handed coordinate system

Maximum absolute translation or rotation per scan

Depending upon the site and disease severity, subject motion can be as great as 1 to $\mathbf{2 c m}$ and/ or many degrees. Study motion typically spans a greater range with greater disease severity (e.g. moderate AD, FTD).

Frame of Reference and Technical Details for Project

 Handed Coordinate System

$(0,0,0)$ is the Image Center

Transverse

Sagittal

Coronal

Technical Details of transformations and reconstructions

Severe subject motion example (ADNI 1)

M otion during scan causes artifact due to:

- Sampling of blended/ incorrect tissue regions
- Attenuation over- or undercorrection due to misalignment with Tx scan
- Motion correction does not remove the embedded artifact, especially with severe movement

Subject M otion: Impact on SUVR

Scan of subject with severe motion

Target Region
Reference region
SUVR at 50-55 minutes $=1.5$; SUVR
at 60-65 minutes $=1.0$, a 50%
difference
In cases of severe motion, motion correction does not remove embedded artifact

Misalignment Parameters - simulate patient movement

	Xtrans (mm)	Ytrans (mm)	Z trans (mm)	X rot (deg)	Y rot (deg)	Z rot (deg)
Baseline	0	0	0	0	0	0
Set 1	5	0	0	0	0	0
Set 2	0	5	0	0	0	0
Set 3	0	0	5	0	0	0
Set 4	0	0	0	5	0	0
Set 5	0	0	0	0	5	0
Set 6	0	0	0	0	0	5
Set 7	5	5	5	0	0	0
Set 8	0	0	0	5	5	5
Set 9	5	5	5	5	5	5
...						

Analysis methods (two approaches of several)

ADNI (Jagust Lab)

- PET image motion corrected, frames averaged, intensity normalized, smoothed
- PET coregistered to M RI
- Gray matter ROIs defined using Freesurfer
- Signal intensity measured
- Cortical average = frontal, AC, PC, lateral temporal, lateral parietal
- SUVRs calculated
- Ref regions: Whole cer, brainstem, subcortical white matter, composite

Avid (not on label)

- PET preprocessed
- PET spatially warped to PET template
- Probabilistic template ROIs applied
- Signal intensity measured
- SUVRs calculated
- Ref regions: Whole cer, pons, subcortical white matter

Image Analysis

- For the Baseline and multiple Sets of images \rightarrow SUVRs calculated
- Will use ADM dx's PET Amyloid Analysis Package
- Δ SUVR measures will be calculated
- $\Delta S U V R=\left(\frac{\text { SUVRset }_{n}-\text { SUVRbase }^{\text {SUVRbase }}}{\text { SU }}\right) \times 100 \%$

