- I. Minutes 5/23 QIBA meeting
 - a. Rosen test-retest
 - i. Goals
 - I. Test-retest repeatability
 - 2. 20% CV Ktrans IAUGC
 - 3. most DCE repeatability studies are single-institution or industry driven. Experience in practice lacking.
 - ii. Proposal
 - I. Test-retest evaluation prostate DCE and DWI in 30 patients across 6 centers
 - 2. Primary target"tumor" = whole prostate
 - 3. Secondary target = dominant prostate tumor nodule
 - iii. Rationale
 - I. Patient population prostate cancer patients
 - a. DCE and DWI already used
 - 2. Prostate good surrogate for mets
 - 3. No need for specialized training/education regarding "target lesion" selection
 - a. Techniques for large volume DCE evolving which may in future obviate need for tumor "selection"
 - 4. No motion/physiologic variability
 - iv. Statistics
 - I. Endpoint statistics is a question. Which variables?
 - a. COV
 - b. Repeatability
 - c. Interclass correlation
 - 2. Power test-retest study
 - a. Upper limit/lower limit
 - 3. Absolute or relative units
 - a. Effect of Shapiro-Wilk testing/log-transformation on type/units of repeatability result reporting
 - b. Barboriak (Barnhardt) 2009 article has been revealing
 - 4. Ratio within SD(u)/SD(L)
 - a. Effect of patient number on test-retest "accuracy"
 - b. Alternatively look at width of 95% CI of wSD
 - 5. Findings suggest that n-30 patients adequate for power analysis
 - v. Challenges
 - I. Avoid endorectal coil
 - a. No coil correction
 - b. Must have 3T
 - Ongoing QIBA evaluation of effects of susceptibility & B1 inhomogeneity on DCE and DWI accuracy
 - 2. Arterial inflow

- a. Requires larger DCE-MRI slab
- b. Parallel imaging for improved temp. resolution
- c. Automatic AIF selection (see below)
- vi. Aims
 - I. Primary
 - a. Test-retest performance repeatability coefficient of $K_{\rm trans}$ and IAUGC_{\rm BN} and measured by median pixel values of the whole prostate
 - b. Test-retest assessed by RC of D(t) and measured by median pixel values of whole prostate
 - c. ? add coffee break on visit 2
 - 2. secondary
 - a. test retest on tumor
 - b. effect of reader on RC of DCE and DWI
 - i. 2 readers
 - c. determine whether t1-dependent or t1 independent methods for Gado quantification in DCE produce differing values for RC for Ktrans and IAUGC90bn
 - i. use subtraction (delta SI)
 - 3. exploratory
 - a. explore the correlation between DCE and DWI metrics from both whole prostate and dominant tumor nodule as target lesions
- vii. Target sites
 - I. 2 each: GE, Siemens, Philips
 - 2. 30 total subjects
 - 3. 5 subjects per site (max 10 per vendor)
- viii. Qualifications
 - I. Available body MRI radiology PI
 - 2. Adequate clinical prostate experience & referral base
 - 3. Constant 3T imaging available
 - 4. Phantom imaging specs met
 - a. DWI (Chenevert), DCE (Jackson/QIBA v2)
- ix. Breast ADC data
 - I. Higher variance in Espree ADC values
- x. Minimum tech specs for qualifying 3T MRI scanner with QIBA DCE phantom
 - I. VFA RI fidelity relative to IR standard
 - 2. SI linearity with respect to RI
 - 3. Positional invariance of R1
 - 4. Difficulties
- xi. 3T imaging plan
 - I. Visit I
 - a. Anatomic imaging
 - i. Include e-coil if clinically indicated at site

- 2. Visit 2
 - a. Functional data
 - b. ? coffee break DWI

xii. DWI

- I. SE-EPI
- 2. Fat sat
- 3. AP phase
- 4. Parallel imaging 2x
- 5. 5mm
- 6. 0,100,600,800
 - a. 100,600,800 ADC
- xiii. ? dual transmission
 - I. only Phillips has the capability
- xiv. Consensus
 - I. Axial spgr
 - 2. Ap phase
 - 3. Parallel 2x
 - 4. 5mm SNR
 - 5. increase slab to alleviate arterial in flow (32 slices)
 - a. offset with prostate in inferior portion of slab
 - 6. other specs per QIBA profile
 - 7. 8-10 seconds temporal resolution
 - 8. 2cc/sec
- xv. Analysis
 - I. Single core lab
 - 2. If fail replace with new subject
 - 3. Reader study
 - a. 2 readers
 - b. each evaluate combined imaging
 - c. visible tumor nodule > 5mm?
 - i. if no (either reader), replace subject for
 - tumor endpoints
 - 4. Segmentation
 - a. Whole prostate & dominant tumor nodule
 - b. Performed on both DWI and DCE
- xvi. Modeling
 - I. Automatic AIF
 - a. Avoids reader choice of slices
 - b. Avoids randomness of inflow error variation
 - c. Quality of data for accurate AIF
 - d. Future use of data for reference tissue method
 - 2. 2 compartment modeling
 - a. vp
 - b. pixel-specific delay times
 - c. dual analysis
 - i. tl specific primary analysis for aim l

- ii. signal difference method
- 3. improving temp. resolution
 - a. bandwidth
 - i. GE 250, S:400, P 314 ? higher
 - b. Matrix (phase)
 - i. Why not lower to 128
 - c. Increase frequency FOV
 - i. To allow partial phase fov <80
 - d. Partial K/fractional NEX
- 4. Automated AIF segmentation
 - a. ? Either utilize this methodology
 - b. ? second reader
- xvii. ? exploratory aims of alternative modeling for assessing Kep, Vp xviii. sites
 - I. PENN,
- II. Profile v2
 - a. Claim
 - i. Based on clinical diagnostic challenges in areas utilizing DCE without quantitative rigor
 - b. Areas for consideration
 - i. 3T
 - ii. parallel imaging
 - iii. BI inhomogeneity
 - c. Organ subtypes
 - i. Prostate
 - ii. Breast
 - iii. Glioma
 - d. Diagnostic protocol that is attempted to be more quantitative
 - e. User
 - i. Pharma for vI
 - ii. Now
 - I. Diagnostic challenges
 - iii. Profile for diagnostic assessment
 - f. Starting point for clinical practice
 - g. Action item
 - i. Topic list needs for 3T profile
 - ii. Post-processing (3rd compartment)
 - iii. Clinical applications
- III. Phantom work
 - a. ?publish v1 phantom work
 - b. v2 phantom
 - i. I site, 2 field strength
 - ii. UM, UChicago (Phillips)
 - c. Endpoint is a recommendation on how we should do phantom work and which phantom to do.
- **IV.** Publications

- a. White papers
- b. Profiles
- c. Papers based on phantom work thus far
- V. Activities for upcoming 3 years
 - a. Version I extension for phantom work
 - b. DCE version 2 profile (3T)
 - c. DWI profile
 - i. Timeline
 - ii. ? additional need for phantom and analysis work
 - I. need for more test retest in humans
 - 2. development of a phantom with varying ADC values
 - 3. digital reference object (ADC)
 - iii. lack of funding will limit either the quality of the Profile or delay the Profile
 - d. ?dynamic phantom
 - i. Rajan FDA
 - ii. Canadian dynamic phantom
 - e. RIC
 - i. Benefits to QIBA MR modality committee
 - ii. Digital reference object comparison of vendor specific packages as compared to centralized approach
 - iii. Working with users to troubleshoot
 - iv. Working with vendors to see the utility of a centralized data storage site
- VI. DICOM
 - a. Need for adaptation of DICOM fields
- VII. DWI assignments
 - a. See Michael Boss' document.