System Variance Model for SPECT Ioflupane

Anne Smith and Johannes Zeintl Siemens Molecular Imaging Systems Engineering November 20th, 2015

System Variance Sources Model – Ioflupane SPECT Each source contributes variance to final measureand and ideally should be measured/controlled

Equipment Q	C Acquisition Pr	rotocol Patient		E CONTRACTOR	
 Uniformity Alignment Sensitivity CT calibrations* & QC HU accuracy Uniformity 	Injected dose Uptake time Head position Data statistics Detector/Collimator response Data sampling •Framing •Time sampling •Angular sampling	Size Motion Tracer kinetics Brain condition •Age •Atrophy •Pathology	Attenuation correction Scatter correction Gantry response correction Reconstruction algorithm and settings Detector/collimator response corrections	Partial volume correction Spatial normalization to template Target VOIs Reference region Age correction	g = 0.5 g = -1 g = -2 g = -6
*if SPECT/CT or CT image used	for attenuation correction				

Quantify & Rank the Variance Contribution (example ranking only) Higher the ranking \rightarrow more effort needed in Profile to decrease or control ("biggest band for the buck")

Equipment Q	Equipment QC						
Dose calibrator SPECT calibrations & QC •Uniformity •Alignment •Sensitivity CT calibrations* & QC •HU accuracy •Uniformity	CT acquisition* Injected dose Uptake time Head position Data statistics Detector/Collimator response Data sampling •Framing •Time sampling •Angular sampling	Patient Size Motion Tracer kinetics Brain condition •Age •Atrophy (D%) ● •Pathology	Image Recons Attenuation correction (A%) ● Scatter correction Gantry response correction Reconstruction algorithm and settings (C%) ● Detector/collimator response corrections (E%) ●	truction Image Analysis Partial volume correction (B%) € Spatial normalization to template Target VOIs Reference region Age correction	s -	r = 0.5 r = 0.5 r = 0.5 r = -2 r = -2	
*if SPECT/CT or CT image used	_						

PET FDG Tumor & Amyloid Strategies to Control Variance

Relied heavily on PET clinical trial harmonization experience from pharmas and CROs

Sources of data to determine variance

- Scientific literature
 - Analyze data in published studies
 - If possible, acquire the data reported on in the literature
- Phantom studies
 - "Ground truth" is known with certainty
- Pilot studies
 - QIBA has funded several of these
- Manufacturers' Specifications
 - Accuracy

Excellent Example to Estimate Various Sources of Variance

- Following four slides were contributed by Brian Zimmerman from NIST
 - Presented Nov. 17th in the Phantom/DRO Sub-group Netmeeting
- Studies like this can help us quantify and rank our sources of variance
- Note where gaps of data/scientific studies are for quantifying variance contribution
 - Develop projects and request funding (e.g. from QIBA) to fill in gaps

SPECT imaging quantification with surrogates

- Series of ¹³³Ba sources designed and calibrated by NIST (constructed by private company)
- Diameters varied from 0.8 cm to 2.9 cm to test partial volume recovery
- Sources sent to 9 clinics in different countries (usually representing best practice in country); half of participants from developing countries
- Uncertainty on activity calibration < 1 %

Three trials

- First: use of "best practice"
- Second: Strict, prescriptive protocol
- Third: Analysis of second trial data by single center
- Study used combination of Planar and SPECT-CT

Best results achieved with prescriptiveprotocol and centralized data analysis

Justification for our QIBA BC 😳 !

- Average recovery using SPECT-CT improved from +12(6) % in first trial to 0(8) %
- Partial volume corrections of up to 20 % required (not made in comparison)
- Quantification of 5 % should be possible with appropriate corrections and protocol

SPECT-CT results: ratio of participants' results to NIST-calibrated activity for each test object

What about this case?

- ⁵⁷Co as surrogate for ¹²³I?
 - Strongest photons in 123I at 158 keV; doublet in 57 decay at ~125 keV
- With help from source manufacturer, making solid mock sources with any of these configurations should be possible (even with different activity levels)
- Calibrated activity uncertainty should be on order of 1 %

Flangeless Esser PET Phantom Lid

