Arinc Ozturk, MD; Mark Palmeri, MD, PhD; Manish Dhyani, MD; S. Kaisar Alam, PhD; Shigao Chen, PhD; Kathryn Nightingale, PhD; Ned Rouze, PhD; Stephen McAleavey, PhD; Matthew W. Urban, PhD; Jun Chen, PhD; Luzeng Chen, MD; Vijay Shamdasani, PhD; Michael MacDonald, PhD; Ted Lynch, PhD; Ted Lynch, PhD; Andy Milkowski, MS; Keith A. Wear, PhD; Timothy J. Hall*, PhD; Paul L. Carson*, PhD; Brian Garra*, MD; Anthony E. Samir*, MD, MPH

Need for Standardization

- Nearly all high-end clinical ultrasound systems offer shear wave elastography imaging (SWEI)
- There are many "free parameters" in commercial implementations of SWEI
- Each system should provide equivalent shear wave speed estimates in the same material
- Manufacturers can validate their implementation with known phantoms
- Users can validate their techniques and perform system quality assurances

Profile Development and Conformance Plans

- Draft Profile document, with detailed protocols and checklists, is complete
- A request for public comment will be sent to subject matter experts around Jan.2018
- **Checklist** summarizes the profile. It is ready for public use. Please scan the code below to reach the checklist.
- Manufactures are testing their conformance informally with similar phantoms. New stable, elastic phantoms will be specified for manufacturer self testing for claims

Palmeri et al. Guidelines for Finite-Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagatio in Tissue-Mimicking Media, 2017

Phase velocities

Groundwork Projects

- Simulating acoustic radiation force beam data and analysis
- Computing wave motion with 2 different finite-element modeling packages
 - LS-DYNA
 - Abagus
- Extraction of motion and processing the data
- This simulation can be useful for developing and testing algorithms for academic and industrial researchers involved in making quantitative shear wave-based measurements of tissue material properties.

Comparison of focal depth Comparison of viscoelastic materials

*The focal number, F/N = z f/D, where z f is the focal depth and D is the aperture width.

QIBA Ultrasound Shear Wave Speed Biomarker Committee: Overview and Status Update

Comparison of length of ARF push

Medium 1 Medium 2 Medium 3

Elastic Phantom Study Understanding bias and variance in lossless phantoms

- Good agreement among systems (10 ultrasound systems and MRE)
- Some depth dependence in SWS for some systems (now corrected)

Viscoelastic Phantom Study Understanding bias and variance in lossy phantoms

- Good agreement among systems (A—L)
- Majority of systems within ±7% of the consensus median SWS
- Some systems considerably challenged in stiffer media and deeper depths
- Violin plot of combined ultrasound data demonstrates excellent agreement with MRE when operating at equivalent frequency

Claim1(technical performance) A SWS measurement has a within-subject coefficient of variation(wCV) of X%

Claim 3(longitudinal claim)

- Different imaging systems
- Same site
- Two time points
- Change If the measured change is \geq W%

- Same imaging systems Two time points
- Change If the measured % change is \geq Z%

Claim 4(longitudinal claim)

- Different imaging systems
- **Different sites**
- Two time points
- If the measured change is ≥ G%

Claim 5(cross-sectional) For a given SWS measurement of Y, a 95%CI for the true SWS(in m/s) is Y±(1.96 x Y x X/100)

		SWS in Claims	4.5cm depth	7cm depth
	SWS<1.2	X	5%	8%
		Z	14%	22%
		W	19%	25%
		G	17%	19%
	1.2 <sws<2.2< th=""><th>X</th><th>4%</th><th>5%</th></sws<2.2<>	X	4%	5%
		Z	11%	14%
		W	14%	17%
		G	17%	19%
	SWS>2.2	X	10%	12%
		Z	28%	33%
		W	33%	39%
		G	33%	39%

Table1- SWS values for claims

What if patient is not able to hold breath?

Non-compliant

Fibrosis Stage	Breath	Median SWS in m/s	Range	Std Dev	p value
	Profile compliant	1.32	[1.22-1.41]	0.06	0.005
0	Non-compliant	1.39	[1.29-1.49]	0.05	
	Profile compliant	1.27	[1.23-1.37]	0.05	0.96
1	Non-compliant	1.29	[1.11-1.38]	0.08	
	Profile compliant	1.59	[1.42-1.72]	0.1	0.05
2	Non-compliant	1.38	[1.31-1.71]	0.14	
	Profile compliant	1.69	[1.61-1.73]	0.04	0.62
3	Non-compliant	1.665	[1.62-1.73]	0.03	
	Profile compliant	2.27	[1.97-2.45]	0.16	0.15
4	Non-compliant	2.15	[1.7-2.34]	0.18	

Vedian SWS in m/s	Range	Std Dev	p value	
1.32	[1.22-1.41]	0.06	1	
1.31	[1.3-1.32]	0.01		
1.27	[1.23-1.37]	0.05	0.23	
1.33	[1.27-1.39]	0.06		
1.59	[1.42-1.72]	0.1	0.06	
1.43	[1.34-1.44]	0.05		
1.69	[1.61-1.73]	0.04	0.86	
1.67	[1.67-1.72]	0.02		
2.27	[1.97-2.45]	0.16	0.23	
2.15	[2.1-2.18]	0.04		

QIBA Projects and activities have been funded in whole or in part with Federal funds from the National Institute of **Biomedical Imaging and Bioengineering**, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN268201500021C