Call Summary

In attendance: RSNA:
James T. Voyvodic, PhD (Chair) Julie Lisiecki
Jay J. Pillai, MD Madeleine McCoy
Ted DeYoe, PhD Domenico Zaca, PhD

Discussion of Neurovascular Uncoupling
- Dr. DeYoe discussed function field maps and using a dual mapping approach

 Test using perimetry map: overlay of visual field mapping with fMRI data on top
 - Subject-driven activity mapping
 - Independent method to determine if BOLD signal is coming through

- CO₂ challenge:
 - Uses whole brain map; Looks for BOLD responsiveness and areas where it is missing
 - Overall blood-flow measures mechanistic neurovascular uncoupling (NVU)
 - Monitors any disruptions to brain activity that could occur
 - Neuro-response to wherever the BOLD signal is recorded
 - Coupling nerve signal to hemodynamic signal
 - Testing vascular compliance and effects of CO₂ on vascular control/ smooth muscle systems
 - Need to use some measure to identify high-risk NVU; functional field map - more comprehensive
 - CO₂ varies from moment to moment; more sensitive to change

- Quality-Control Cross-Check:
 - Breath-hold vs. functional field map
 - Could be used to cross-check one another/ validate other approaches
 - Any method that claims to detect NVU must be validated and proven to be reproducible

Gary Glover, Stanford University School of Medicine, Radiological Sciences Laboratory
- Dr. Glover is studying respiratory variations; regressors in fMRI analysis
- Research interests encompass the physics and mathematics of imaging with MRI
- gary.glover@stanford.edu; http://rsl.stanford.edu/glover/

Breath-hold Data (Dr. Pillai)
- Not much recorded respiration data; must rely on tasks (visually observe)
- Use breath-hold data; train patients before they go into the scanner
 - Patients are coached to breathe in and exhale at correct times
- Data does not revolve around patient compliance; Use observation of the rise and fall of the chest wall
- There is no reliable PCO₂ or CO₂ data with quantitative measurements of what is being inhaled
 - Some groups try to measure with CO₂ challenge
 - This “challenge” is not suitable for patients with brain tumors or those who had brain surgery – could pose risk
 - Danger exists in regard to patients with different inter-cranial pressure (rise in CO₂) inside
 ▪ Has to do with how long the breath hold periods are
 ▪ Using 16 second intervals is OK; (optimal at 15-20 seconds); dangerous over 30 seconds

Pulse-Oxygen Signal
- Some patients are CO₂ retainers. Knowing how much CO₂ or O₂ a patient has will not make a difference in the data
- Measuring levels of CO₂ in the blood would require a blood draw
 - This is not a trivial matter; it is very painful for this particular test and best to avoid
 - Instead – look for gaps in the map – amplitude gap response
- Colleague of Dr. Pillai is using a ‘respirac’ device – and has found no advantage in controlled CO₂ except for:
 1. Quantitiation (bi-hemispheric changes with respect to normative data)
 2. Looking for relative changes in normal surrounding cortex and white matter
 3. For long-term study/ therapeutic intervention/ tracking changes

Optimal Display:
- Analogous to BOLD activation task
• Need to individually threshold each of the maps
 o Look for disruptions in cortical matter
 o Look for a normalization procedure that does not remove the signal
 o Signal change – rCBV vs. CVR BOLD % signal change
• Want normalization method that can be relied upon with uncoupling in the right place to cross-validate.
 o Perfusion gives good sense where there are vascular problems; however, questions remain about NVU
 o Breath hold CVR may be more sensitive than BOLD in some cases
 o Still looking for measure that is independent of variables

Closing thoughts: Any method that claims to detect NVU must be validated and proven to be reproducible. There are no obvious solutions at this time.

Next Call for fMRI Reproducibility: Tuesday, February 1, 2011, 11 am CST.