Quantitative Imaging Biomarkers in Ultrasound Elasticity Imaging

Timothy J Hall

Medical Physics Department

University of Wisconsin

AIUM 2012

Proposed Biomarkers

- Shear wave speed for quantifying liver fibrosis
- Shear wave imaging for breast tumor classification
 - Elastic modulus
 - Tumor volume

Outline

- Techniques and potential biomarkers measured
 - Underlying physics
- Degree of fit with QIBA biomarker selection criteria:
 - Transformative
 - Translational
 - Feasible
 - Practical
 - Collaborative
- Numbers of exams that might be involved in the US and worldwide by use of the biomarker
- QUALY's saved, or most important impact estimates that can be made reasonably
- Implementations by the various manufacturers
- Clinical demand

Acknowledgements

- Many thanks to my friends at Duke University
 - Kathy Nightingale
 - Mark Palmeri
 - Gregg Trahey
- Most of the content presented here was developed by them

"Elasticity" as a Quantitative Biomarker

- · Analogous to the stiffness of a spring
 - How hard do you have to push on it to change its length
 - Relate force on the spring to its stretch or compression
- In 3D we relate force (stress) to displacement (strain)
 - "strain imaging" (relative displacement)
 - Other more sophisticated methods for elasticity imaging
 - Shear wave speed
 - · Elastic modulus imaging
 - · Nonlinear elasticity imaging

What is "Elasticity Imaging"?

- Two-step process
 - Apply a force
 - Watch what happens
 - Using ultrasound (or MRI, or OCT, or...)
- Categorize imaging approaches by the type of force used to induce displacement

"Elasticity" Depends on Rate

Consider a simple thought experiment

- Slowly lower your finger into a pool of water
 - Your finger enters slowly without significant disruption of the surface
 - You feel almost nothing except wet
- Slap the surface of the water with your hand
 - The water splashes
 - It 'hurts' a little
- Fall from the sky into the ocean (say 10,000ft up)
 - The water splashes
 - Contacting the water is not much different than falling on a cement roadway

"Elasticity" Depends on Rate

- Absolute "Stiffness" estimated with one system might not equal that obtained with another system
 - The elastic modulus depends on the rate at which force is applied
 - Quasi-static elastography is about 1Hz
 - Radiation force elastography is about 50Hz—1kHz
 - Use caution when comparing systems
 - Expect the modulus estimated with radiation force methods to be higher than that estimated with freehand palpation

Acoustic Radiation Force

Force generated by a transfer of momentum from an acoustic wave to the medium through which it is propagating, caused by absorption (predominantly) and scattering in soft tissue. Force magnitude typically ~3 g/cm³

$$F = \frac{2\alpha I_{ta}}{c}$$

 α = absorption coefficient

I_{ta} = temporal average intensity

c = speed of sound

Nyborg, W. Acoustic Streaming, in Physical Acoustics Vol. IIB, editor: Mason W.P., Academic Press,1965.

Relating material parameters

- Young's modulus: E
- Shear modulus: μ
- Shear wave speed: c_T

$$E=3\mu=3\rho(c_T)^2$$

- Linear, isotropic, elastic solid (anistotropy?)
- Incompressible (v = 0.5), [-1:0.5]
- May be a function of viscosity (dispersive)
- May be a function of strain (nonlinear)
- Poroelastic?

Liver Biopsy

- Diagnostic gold-standard
 - Invasive
 - Infection
 - Hemorrhage
 - Pain
 - Limited sampling
 - Costly (time and money)

- Stage 0: Normal
- Stage 1: Zone 3 perisinusoidal / periportal
- Stage 2: Perisinusoidal / periportal fibrosis
- Stage 3: Bridging fibrosis
- Stage 4: Cirrhosis

Breast Cancer

- 1-in-8 women will develop breast cancer
- > 207,000 new cases of invasive cancer diagnosed in 2010 in the US
- Second leading cause of cancer death in US women
- 70-80% occur in women with no family history
- Risk factors:
 - Aging woman
 - BRCA1 / BRCA2

Limitations & future directions

- Many assumptions surrounding tissue homogeneity
 - when is isotropy actually appropriate?
- Elastic nonlinearity, viscosity and anisotropy considerations are important
- Disease etiology may play a significant role in tissue stiffness
- Need for large-scale clinical studies and research validation in the quantitative methods
- Reassess the acoustic output limitations for acoustic radiation force imaging modalities

Conclusions

- Potential biomarkers identified
 - Shear wave speed for staging liver fibrosis
 - Breast tumor classification
- Underlying physics reasonably well understood
- Degree of fit with QIBA biomarker selection criteria:
 - Transformative: Likely to change clinical workflow
 - Translational: Laboratory studies and preliminary clinical trials completed
 - Feasible: In clinical use outside of USA
 - Practical: Easy to perform
 - Collaborative: world-wide interest
- Implementations by the various manufacturers
 - At least two ultrasound system manufacturers