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Significance Approach

Preliminary Round-Robin Results and Discussion

Clinical Need for Flow Quantification 3D Volume Flow Technique
e In many clinical practices, ultrasound scans commonly include a blood flow e The volume flow biomarker measures blood volume ultrasound
imaging component (i.e., pulsed wave, color- or power mode Doppler) that is flow rate (mL/min), in vessels with no need to make probe
typically used to indicate the presence or absence of flow. assumptions about the vessel cross sectional shape.
e Approximately 20% of ultrasound scans employ some degree of blood flow e The general principle of the technique is that the flow . . / N
measurement and quantification. can be computed by multiplying blood velocity (iateral-elevational ;,;;:?"\_f,
¢ In the United States, there exist approximately 200,000 ultrasound machines components along all US beams by local increments ™" *" /7 '
(2014 Klein Report), that yield 136 million exams (2013 Klein Report), and of the vessel cross-sectional area as "seen” from the
thus annually 27 million ultrasound scans, where true flow measurements are transducer surface. These values are summed over a ,
potentially of interest. surface intersecting the vessel. » LS (Cmi:e’:iion)
e Most flow measures are heuristic and qualitative, semi-quantitative or just lllustration of (A) imaging geometry required for 3D
inaccurate, which indicates a need for a robust quantitative biomarker. volume flow measurement. Probe is oriented such that
the lumen intersects the c-surface (lateral-elevational angle 8, [
. surface) in cross section. (B) Angle of c-surface
1 D/2 D VOI ume FIOW TeCh N |q ue intersection is an independent variable such that circular Q é
e 1D flow velocity measurement based on range gate position in a 2D image (0,) and ellipsoidal (6, and 6,) geometries all yield =
e Current volume flow is computed based on several assumptions: identical volume flow estimates without the need for any &‘%
a. accurate user knowledge and selection of beam-to-flow angle angle correction.
b. accurate user knowledge and measurement of vessel diameter : </
c. cylindrically symmetric flow velocity profile -, &
d. circular vessel cross section Qﬁ/
(B)
PS 17.6 cmis| NS e \\ 3D volume flow (Q) is computed by multiplying blood flow velocity (v ), as
o SR A measured by color flow, by the surface area of the intersected lumen (A ). Given
TAMEAN 9.5 cmis ey __ 15 W that Q=A,xv,=A xv . =A xv, 3D volume flow is independent of angle.
YoRow cc TN I | W Specifically, A = A,/ cos(a ) and v_= v, x cos(a ). Therefore, the cosine factor
b S . cancels when A is multiplied by v. -
Partial volume effect in 3D volume flow Vesse! 7 velocity
measurement. Three types of color flow | - vectors
pixels exist. Color flow pixels inside the -
vessel correspond to 100% blood, those |
- - outside the vessel correspond to 0% | | |
Eulsed wave 1D/2_D volume flow measurement Anatomically blood, and those partially inside the elevational
In the umbilical vein configured flow vessel correspond to values between 0% Color flow phes!
phantom and 100% blood. Color flow power is ] — )
CI | N |Ca| L| m |tat|OnS directly proportional to the amount of nside  partially inside _ outside
blood in each voxel and can therefore be vessel vessel vessel
e Current 1D/2D volume flow technique is user dependent and is associated used to correct the partial volume effect.
A0 Gaus Theorem sats trt volure fow (0) can
e Turbulence or curved vessels prohibit meaningful volume flow estimation Q = Z v (Ai X Wi) be obtained by mtegrgtmg the product A, x v; over
e Dynamic changes in cross-sectional area influence volume flow estimation i€S the surtace area (S), 1., the c-surtace. Power

mode data is used to weight each area (A) in
order to correct for partial volume effects.
Protocol and Data

Performance Sites o | o
e Provide sites with minimal and uniform guidelines for system setup and allow

Mayo Clinic « MIT « University of Alabama at Birmingham ¢ University of for adequate user vessel positioning and parameter selection (gain, PRF,
Michigan ¢ University of Washington ¢ University of Wisconsin « Hitachi WEF).
Healthcare Americas ¢ Toshiba America Medical Systems e Collect data for the identification and assessment of bias and inter- and

intra-observer variability (reproducibility and repeatability) across operators,
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Round-Robin Flow Phantom Evaluation

Prototype phantom for 3D volume flow assessment in realistic in situ conditions, with curved, stenotic and non-circular tubing sections (see photo of phantom in
Significance section). Nominal lumen diameter is 5 mm, flow rates range from 30 to 750 mL/min, and the stenotic section consists of a 40% reduction (5 to 3 mm). Note:
For all results, systems 1 and 2 represent means of evaluation at 3 sites, system 3 only at one site so far. Large symbols represent the mean of the 3 systems tested.
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