IMPACT:

<u>Imaging Metrics for Precision</u> <u>Analysis of Clinical Trial results</u>

- Lawrence H. Schwartz, MD, Chair of Radiology, Columbia University Medical Center
- Geoffrey R. Oxnard, MD, Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute
- Mithat Gonen, PhD, Dept of Epidemiology & Biostatistics, Memorial Sloan-Kettering Cancer Center
- Michael Maitland, MD PhD, Dept of Medical Oncology, University of Chicago

Binsheng Zhao, DSC, Dept of Radiology, Columbia University Medical Center

Problem statement

- Oncology drug development is inefficient
 62.5% of phase III trials are negative
- Therapeutic progress has inherently made drug development more difficult
 - Greater use of randomized phase II trials
 - However, trials continue to study traditional endpoints (ORR, PFS)
- A comprehensive effort to develop new trial endpoints is needed

Gan et al, JNCI, 2012

Background (3)

 Some have suggested that different analytical tools will not improve clinical trial analysis:

- Kaiser, CCR, 2012 compared PFS to growth modeling by re-sampling phase II trials
- Used 5 large Genentech studies published in 2001-2005
- Concluded that PFS is the best endpoint for phase III trial prediction
- We prefer to study source imaging data to ensure highest quality data input

Hypothesis

- 1. Quantitative analysis of tumor response as a continuous variable will improve the ability of randomized phase II trials to accurately predict phase III results
- 2. Detailed assessment of the entire tumor burden using volumetric CT will improve efficiency and accuracy of phase II trial analysis

Aims

 Assess feasibility of collection and analysis of images from completed phase III trials to:

 (A) simulate of phase II trial results and
 (B) develop quantitative metrics for improved prediction of phase III trial results

Aims

- Assess feasibility of collection and analysis of images from completed phase III trials to:

 (A) simulate of phase II trial results and
 (B) develop quantitative metrics for improved prediction of phase III trial results
- 2. Assess which quantitative metrics most accurately and reliably predict phase III results across different trials
- 3. Quantify the added value of volumetric tumor measurement as compared to conventional measurement only

Value statement

- 1. New metrics could provide greater clarity for go/no-go decisions regarding phase III drug development
- 2. More efficient phase II trials will allow earlier results and more innovative studies (dose finding, subset analyses)
- 3. The metrics from the proposed analysis could then be applied to other settings like biomarker development and prognostication

Key strengths

- 1. Collaboration between multiple academic and pharma parties, with FDA representation
- 2. Comprehensive analysis of source image data
- 3. No bias towards a specific trial analytic
- 4. FNIH supported effort in pre-competitive space

Progress

- 1. Multiple pharmaceutical sponsors have interest in releasing data for analysis:
 - Sanofi, GSK, Genentech, Celgene
- 2. Positive response to date from ICL's for making imaging data available
- 3. Seed funding for year 1 expected from FNIH, additional funding is needed