US Modality Committee Report

Timothy J Hall, Professor Medical Physics Department, University of Wisconsin

Brian Garra, MD
Washington, DC VA and the FDA/CDRH

Andy Milkowski, Senior Director Research and Development Siemens Healthcare, Ultrasound Division

History of our Committee

- Initial discussions at 2011 RSNA meeting
- Debate to select initial biomarker effort at 2012 AIUM conference (March.2012)
 - Initial biomarker chosen
 - Committee Co-Chairs selected
- A Committee formed to investigate QIBA potential
 - Subcommittees formed
 - Draft charge to each subcommittee established
 - · Membership and leadership being determined

History of our Committee

- Lively discussions at both meetings
- MANY options for quantitative biomarkers from ultrasound systems
 - For more than 30yrs we've had a conference dedicated to this specific area (quantitative ultrasound)

Proposed Initial Biomarker

- Shear wave speed for quantifying liver fibrosis
 - Fibrosis is known to increase liver stiffness
 - Shear modulus is proportional to the square of shear wave speed
 - At least two ultrasound imaging system manufacturers produce systems capable of estimating shear wave speed in soft tissues
 - At least one non-imaging system also commercially available
 - Initial reports of clinical tests in the literature

Relating material parameters

- Young's modulus: E
- Shear modulus: μ
- Shear wave speed: c_T

$$E = 3\mu = 3\rho(c_T)^2$$

- Linear, isotropic, elastic solid (anistotropy?)
- Incompressible (v = 0.5), [-1:0.5]
- May be a function of viscosity (dispersive)
- May be a function of strain (nonlinear)
- Poroelastic?

Agrerance	Shill shape	lehak etage	Filessia
17423400	Categorial description	Categorical assignment	SHARLING STATE
	He Street Extrag	- 4	194
	Filtran aspension of some portol man of short filtran aspta	77.6	3.0%
1000	Filtrous exponents of most portal areas; +i short Noncos cepta	3	3.0%
+	Fitness explanation of west partial areas with occasional gortal to partial (F-P) tireliging		8.5%
Solv	Filmes expension of potal erose with marked bridging (portal to potal (P-P)) as well as potal to ceretal (P-C)	1.4	13.7%
	Makes tricting (P-P end/or P-C), with occasion of noticion (incomplete sarkward)	-	24.3%
0	Childwis, possible or detaile	14	77.0%

			AUROC					
			F0 vs	F0, 1 vs		F0,1,2,3 vs		
Study:	Disease	Total N	F1,2,3,4	F2,3,4	F3,4	F4		
lijima et al (Japan)	CLD	160				0.925		
Sporea, et al (Romania)	HCV, HBV (N=54,17)	183		0.839		0.907		
Friedich-Rust et al								
(Germany)	HCV, HBV	81		0.84	0.93	0.95		
Lupsor, et al (Romania)		112	0.709	0.851	0.869	0.911		
FierBrat. (Romania)	HCV	74		0.902	0.993	0.993		
Takahasji et al (Japan)	CLD	80		0.94	0.94	0.96		
Goertz et al (Germany)	HCV, HBV (N=36,21)			0.85	0.92	0.87		
Cabasa et al (Italy)	CLD	60				0.9		
Yoneda et al (Japan)	NAFLD	64			0.973	0.976		
Barcelona Study	CLD, transplants (N=49, 62)	111		0.855 (CLD), 0.921 (trpInts)				
Palmeri et al (Duke)	NAFLD	135		(,	0.9			
Mean Values			0.709	0.875	0.932	0.932		

Shear Wave Speed as a Biomarker

- Each ultrasound system produces a shear wave with different frequency characteristics
 - Soft tissues are dispersive (different shear wave speed at different frequencies)
- The (viscous) loss mechanism might make simple (Voigt) model approximation invalid
 - Proportionality between squared shear wave speed and shear modulus might be inaccurate
- Under what clinical conditions can these measurements be made with confidence

Ultrasound QIBA Committee

- Three Co-Chairs
 - Medical Physicist
 - Radiologist
 - Industry Leader

Ultrasound QIBA Committee

- Three subcommittees
 - Evaluate system dependencies
 - Develop/test/select ultrasound phantoms
 - Determine confounding clinical parameters
- Subcommittee formation nearly complete
 - Draft charge to each subcommittee has been circulated
 - Currently determining leadership
 - Determining meeting schedules

Conclusions

- Potential biomarkers identified
 - Shear wave speed for staging liver fibrosis
- Underlying physics reasonably well understood
- Degree of fit with QIBA biomarker selection criteria:
 - Transformative: Likely to change clinical workflow
 - Translational: Laboratory studies and preliminary clinical trials completed
 - Feasible: In clinical use outside of USA
 - Practical: Easy to perform
 - Collaborative: world-wide interest
- Implementations by the various manufacturers
 - At least two ultrasound system manufacturers