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DEVELOPMENT OF THE FRAMEWORK FOR THE MULTIPARAMETRIC CASE

To provide guidance on technical performance validation of 
measurement processes for QIBs, the QIBA Metrology Working 
Groups published a series of papers in 2015:
• Terminology: Kessler et al (2015), Statistical Methods in 

Medical Research 24 (1), pg. 9-26.
• Performance: Raunig et al (2015), Statistical Methods in 

Medical Research 24 (1), pg. 27-67.
• Algorithm comparison: Obuchowski et al (2015a), Statistical 

Methods in Medical Research 24 (1), pg. 68-106.
• Case example: Obuchowski et al (2015b), Statistical Methods in 

Medical Research 24 (1), pg. 107-140.
• Meta-analysis: Huang et al (2015), Statistical Methods in 

Medical Research 24 (1), pg. 141-174.
• Overview for radiologists: Sullivan et al (2015), Radiology 277 

(3), pg. 813-825.

Correlation between QIBs
Probability of declaring underlying 

change in at least one QIB

Substantial correlation (Pearson correlation about 
0.6)

0.193

Minimal correlation (Pearson correlation between 
-0.01 and 0.01)

0.267

Mixed levels of correlation (correlations are 
substantial half the time and minimal half the time)

0.247

Simulation studies results.  Test and retest measurements for each of six 
QIBs were generated with no underlying change in any of them.  The 
proportion of times in which a change in at least one QIB was detected was 
estimated by comparing the magnitude of the difference between the test 
and retest measurements of each QIB to the corresponding repeatability 
coefficient (RC; i.e. threshold below which differences in repeat 
measurements obtained under the same conditions should fall with 95% 
probability).  These proportions should be close to 0.05.

Many clinical scenarios involve multiple QIBs, e.g. multiparametric MRI in 
prostate cancer involving T2-weighted, diffusion weighted, and dynamic 
contrast-enhanced MRI.  These multiparametric QIBs present new issues.  
For example,
• Approaches from the above manuscript cannot simply be applied to 

each QIB individually as it is likely to result in overinflated Type I error 
(see simulation studies example to the right).

• If data from multiple studies need to be combined to accrue a 
sufficiently large sample size, not all QIBs of interest may have been 
measured in each study.

• The QIBs often need to be combined into a score for differentiating 
cases of various phenotypes and predicting clinical outcomes; 
selecting which QIBs to use, combining them, and checking that the 
resulting score is meaningful in terms of phenotype or outcome 
requires careful application of appropriate statistical techniques.

Quantitative imaging biomarker (QIB): “objectively measured characteristic 
derived from an in vivo image as an indicator of normal biological processes, 
pathogenic processes, or response to a therapeutic intervention” (Sullivan et al 
2015).

Types of validation of QIBs and tests based on them (adapted from BeST glossary):

Technical performance validation (analytic validation): assessment of technical 
performance characteristics of a QIB measurement protocol (e.g. test-retest 
repeatability, bias and linearity, reproducibility as a function of differing image 
acquisition and processing protocol aspects) 

Clinical validation: assessment of the ability of the QIB to detect or predict disease 
status, outcome, or phenotype of interest (e.g. diagnostic accuracy, association of 
QIBs with a clinically significant characteristic or molecular biomarker, association of 
QIBs and OS or PFS)

Assessment of clinical utility: evaluation of the net improvement in patient outcome 
resulting from the use of the test to guide treatment decision

Use Case 1: QIBs are treated as a multivariate vector (not to be 
combined mathematically into a score or prediction).
• Inferences for bias for a QIB can be improved by 

incorporating information from other QIBs if the QIBs are 
correlated (see table to the right).

• Methodology developed to test for substantial changes in 
these QIBs based on the Mahalanobis distance Q (i.e. 
distance between the zero vector and the vector of changes, 
corrected by variance); results in correct Type I error (see 
figure and table to the right).

• Future work: develop statistical methodology to combine 
data from multiple sources when not all QIBs are available in 
all sources.

• Future work: develop guidelines to establish the optimal set 
of imaging parameters to obtain measurements of the QIBs.

Use Case 2: QIBs are combined via statistical model or decision 
rule to produce a classification of cases according to phenotypes 
(e.g. molecular subtype).
• Prediction accuracy of the model should be shown to be 

better than some null value (e.g. random guessing).  
• Reproducibility of the score (i.e. model output) and 

classification should be reported.
• Future work: to develop a glossary of terms relevant to this 

use case.
• Future work: to achieve consensus on which aspects of the 

above to report and appropriate metrics associated with 
these aspects.

• Future work: to put forth guidelines on how to properly 
develop the model and assess its prediction accuracy.

Use Case 3: QIBs are combined in a similar fashion to generate a 
risk score or prediction of response to therapy or clinical 
outcome.
• Many concepts from Use Case 2 should also apply, but the 

focus on risk score, response prediction, or clinical outcome 
necessitates different metrics.

• Future work items similar to those of Use Case 2.

Use Case 4: radiomic analyses.
• Radiomic features may not be biomarkers in the 

mathematical sense, but many concepts from Use Case 2 and 
3 should also apply here.

• Development of guidelines for this use case to be started at a 
later date.

For two QIBs, vector of changes should lie within the ellipse with 95% probability and Q < 
5.99 if no underlying change occurred in either QIB.  Red: underlying change in both 
QIBs.  Blue: underlying change in one QIB.  Black: no underlying change in either.  

Correlation between QIBs
Probability of declaring underlying 

change in at least one QIB

Substantial correlation (Pearson correlation about 
0.6)

0.053

Minimal correlation (Pearson correlation between 
-0.01 and 0.01)

0.053

Mixed levels of correlation (correlations are 
substantial half the time and minimal half the time)

0.053

Proportion of times in which a change in at least one QIB was detected based on Q for 
the simulation studies described previously.  These proportions should be close to 0.05.

Technical performance 
of first QIB as a 
function of the second

Truth: mean 
bias and wSD 
for first QIB

Correlation 
between the 
two QIBs

Estimates of bias and wSD of first QIB

Ignoring second QIB Not ignoring second QIB

No association between 
the two QIBs

Bias: 0
wSD: 1.60

0
Bias: -0.025 (0.043)
wSD: 1.578 (0.012)

Bias: -0.025 (0.043)
wSD: 1.578 (0.012)

0.5
Bias: -0.025 (0.043)
wSD: 1.578 (0.012)

Bias: -0.025 (0.040)
wSD: 1.578 (0.012)

0.9
Bias: -0.025 (0.043)
wSD: 1.578 (0.012)

Bias: -0.025 (0.033)
wSD: 1.578 (0.012)

Bias in first QIB 
increases slightly as 
value of second QIB 
increases

Bias: 2.19
wSD: 1.63

0
Bias: 2.23 (0.043)
wSD: 1.609 (0.012)

Bias: 2.23 (0.043)
wSD: 1.609 (0.012)

0.5
Bias: 2.23 (0.044)
wSD: 1.609 (0.012)

Bias: 2.23 (0.040)
wSD: 1.609 (0.012)

0.9
Bias: 2.23 (0.046)
wSD: 1.609 (0.012)

Bias: 2.23 (0.033)
wSD: 1.609 (0.012)

wSD of measurements 
of first QIB increases 
slightly as value of 
second QIB increases

Bias: 0
wSD: 3.24

0
Bias: -0.026 (0.043)
wSD: 3.233 (0.019)

Bias: -0.026 (0.043)
wSD: 3.233 (0.018)

0.5
Bias: -0.026 (0.043)
wSD: 3.233 (0.019)

Bias: -0.026 (0.040)
wSD: 3.233 (0.018)

0.9
Bias: -0.026 (0.043)
wSD: 3.231 (0.019)

Bias: -0.026 (0.033)
wSD: 3.231 (0.018)

Simulation studies results.  Values of two QIBs were generated using different 
relationships between the first and the second.  Inferences on the bias and within-case 
standard deviation (wSD) of the first QIB were performed ignoring the second QIB and 
taking into account the second QIB.  Standard errors of bias are improved by 
incorporating data from the second QIB when the QIBs are correlated.
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Concepts and methods from these papers were intended 
for a single QIB.

The purpose of this effort is to develop a similar set of guidelines 
for the multiparametric scenario to address these issues.


