VOL-PACT: <u>Vol</u>umetric CT for <u>Precision</u> <u>Analysis of Clinical Trial results</u>

Lawrence H. Schwartz, MD, Chair of Radiology, Columbia University Medical Center

Geoffrey R. Oxnard, MD, Lowe Center for Thoracic Oncology,
Dana-Farber Cancer Institute

Mithat Gonen, PhD, Dept of Epidemiology & Biostatistics, Memorial Sloan-Kettering Cancer Center

Michael Maitland, MD PhD, Dept of Medical Oncology, University of Chicago

Binsheng Zhao, DSC, Dept of Radiology, Columbia University Medical Center

•

Problem statement

- Oncology drug development is inefficient
 - 62.5% of phase III trials are negative
- Therapeutic progress has inherently made drug development more difficult
 - More active drugs leads to greater use of randomized phase II trials
 - However, trials continue to study traditional endpoints (ORR, PFS)
- Development of new, modern trial endpoints is needed

Problem statement

- Two randomized trials in 1st-line NSCLC:
 - Carbo/taxol plus placebo
 - Carbo/taxol plus vorinostat

Ramalingam et al, JCO, 2010		Belani et al, ESMO, 2009	
NCI-supported consortia		Industry sponsored	
94 patients		253 patients	
Carbo/taxol:	12.5% RR 4.1m PFS	Carbo/taxol:	29.3% RR 5.5m PFS
& vorinostat:	34.0% RR 6.0m PFS	& vorinostat:	22.4% RR 4.3m PFS
A POSITIVE TRIAL		A NEGATIVE TRIAL	

Background

 It has recently been shown that a greater <u>magnitude of response</u> is associated with a better prognosis for an individual patient

Background

 Yet, conventional trial endpoints do not measure quantitative improvements in response magnitude:

5

Background

 Yet, conventional trial endpoints do not measure quantitative improvements in response magnitude:

6

Background

 Furthermore, advanced imaging of the whole tumor volume can may characterize the biology of tumor growth and response

Cross-product (WHO) 2D

Volume 3D

Background

- Some have suggested that different analytical tools will not improve clinical trial analysis:
 - Kaiser, CCR, 2012 compared PFS to growth modeling by re-sampling data from 5 large Genentech studies published in '01-'05
 - Concluded that PFS is the best endpoint for phase III trial prediction
- We worry that use of case report forms rather than source imaging is a fundamental weakness of such analyses

Hypothesis

- 1. Quantitative analysis of tumor response as a continuous variable will improve the ability of randomized phase II trials to accurately predict phase III results
- 2. Detailed assessment of the entire tumor burden using volumetric CT will improve efficiency and accuracy of phase II trial analysis

g

Aims

- 1. Assess feasibility of collection and analysis of images from completed phase III trials to:
 - (A) simulate of phase II trial results and
 - (B) develop quantitative metrics for improved prediction of trial results
- 2. Assess which quantitative metrics most accurately and reliably predict phase III results across different trials
- 3. Quantify the added value of volumetric tumor measurement as compared to conventional measurement only

Approach (1)

- 1) Collection of existing trial data
 - Focus on large completed landmark trials (>300 patients)
 - Measurable carcinomas: NSCLC, RCC, CRC
 - Collect DICOM imaging from imaging core labs holding scans for pharma
 - IRB has approved receipt of these deidentified images at Columbia

Approach (2)

- 2) Generate semi-automated tumor measurements
 - DICOM images will be studied at a lab experienced with volumetry (e.g. Schwartz lab, Columbia University)
 - Computer generated tumor contours will be corrected as needed by an experienced technician
 - Measurements in 1D, 2D, 3D will be calculated for all lesions >= 1cm (up to 10 lesions) at each time point

Approach (3)

- 3) Develop simulated randomized phase II trials based upon existing trial data
 - Begin with measurement data from large completed clinical trials
 - Taking subsets of patients, will simulate multiple phase II trials of N patients
 - Simulation will incorporate measurement variability

Approach (4)

- 4) Comprehensively study each simulated randomized phase II trial with multiple metrics
 - Entire spectrum of measurement data will be studied, not just "best response"
 - Will include statistical modeling of tumor growth & regression

Approach (5)

- 5) Compare multiple simulations of the same trial to assess the reliability of each metric
 - The variance of each metric will be calculated across 1000 simulations
 - Change in variance with change in N will be studied for each metric

Approach (6)

- 6) Correlate each trial metric with the hazard ratio (HR) from the parent phase III trials in multiple ways:
 - Pearson and rank correlation
 - Linear regression
 - ROC curves on various dichotomized versions of the HR
 - Sensitivity/specificity/predictive values on various dichotomized versions of the metric and HR

Value statement

- 1. New metrics could provide greater clarity for go/no-go decisions regarding phase III drug development
- 2. More efficient phase II trials will allow earlier results and more innovative studies (dose finding, subset analyses)
- 3. The metrics from the proposed analysis could then be applied to other settings like biomarker development and prognostication

17

Key strengths

- 1. Collaboration between multiple academic and pharma parties, with FDA representation
- 2. Comprehensive analysis of source image data
- 3. No bias towards a specific trial analytic
- 4. FNIH supported effort in pre-competitive space
- 5. Leverages a growing movement toward data sharing in cancer research